A novel local search method for microaggregation

R. Mortazavi, S. Jalili
{"title":"A novel local search method for microaggregation","authors":"R. Mortazavi, S. Jalili","doi":"10.22042/ISECURE.2015.7.1.3","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2 k _1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O ( n ^2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2015.7.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2 k _1 records, such that the sum of the within-group squared error (SSE) is minimized. We propose a local search algorithm which iteratively satisfies the constraints of the optimal solution of the problem. The algorithm solves the problem in O ( n ^2) time. Experimental results on real and synthetic data sets with different distributions demonstrate the effectiveness of the method in producing useful protected data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的微聚集局部搜索方法
在本文中,我们提出了一种有效的微聚合算法,以产生更有用的保护数据。微聚集被映射为已知最小和最大群体大小约束的聚类问题。在这个方案中,目标是将n条记录聚类成至少k条最多2k条记录的组,从而使组内平方误差(SSE)的总和最小化。提出了一种迭代满足问题最优解约束的局部搜索算法。该算法在O (n ^2)时间内解决了这个问题。在不同分布的真实数据集和合成数据集上的实验结果表明,该方法可以有效地生成有用的保护数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-Shot Achievable Secrecy Rate Regions for Quantum Interference Wiretap Channel Quantum Multiple Access Wiretap Channel: On the One-Shot Achievable Secrecy Rate Regions Towards a Formal Approach for Detection of Vulnerabilities in the Android Permissions System Towards event aggregation for reducing the volume of logged events during IKC stages of APT attacks A Time Randomization-Based Countermeasure Against the Template Side-Channel Attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1