Artificial neural network classifier based on kinetic parameters of human motion

M. Mostafavizadeh, F. Eslam, M. Zekri
{"title":"Artificial neural network classifier based on kinetic parameters of human motion","authors":"M. Mostafavizadeh, F. Eslam, M. Zekri","doi":"10.1109/ICCIAUTOM.2011.6356699","DOIUrl":null,"url":null,"abstract":"As most of elderly encounter osteoporosis, falling can cause serious fractures in them. Kinetic signals contain useful information about the balance impairment of human during walking, however these details cannot be directly recognized by the observer The aim of this paper is to investigate artificial neural network model for classifying the kinetic pattern in to two groups: faller and non-faller. The kinetic parameters obtained by a six-channel force plate for 3 groups of volunteer as healthy young, healthy elderly and faller elderly. Data space is then normalized and rearranged as input data matrixes for a 3-layer feed forward neural network to classify the patterns. Neural network classifier is seen to be corrected in about 85% of the test cases.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"11 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As most of elderly encounter osteoporosis, falling can cause serious fractures in them. Kinetic signals contain useful information about the balance impairment of human during walking, however these details cannot be directly recognized by the observer The aim of this paper is to investigate artificial neural network model for classifying the kinetic pattern in to two groups: faller and non-faller. The kinetic parameters obtained by a six-channel force plate for 3 groups of volunteer as healthy young, healthy elderly and faller elderly. Data space is then normalized and rearranged as input data matrixes for a 3-layer feed forward neural network to classify the patterns. Neural network classifier is seen to be corrected in about 85% of the test cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人体运动动力学参数的人工神经网络分类器
由于大多数老年人患有骨质疏松症,跌倒会导致严重的骨折。运动信号包含了人体在行走过程中平衡性损害的有用信息,但这些细节不能被观察者直接识别。本文的目的是研究将运动模式分为跌倒和非跌倒两类的人工神经网络模型。采用六通道测力板对健康青年、健康老年人和跌倒老年人三组志愿者进行动力学参数分析。然后将数据空间归一化并重新排列为输入数据矩阵,用于三层前馈神经网络对模式进行分类。神经网络分类器在大约85%的测试用例中被纠正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design of adaptive interval type-2 fuzzy sliding mode control using Genetic algorithm Constrained model predictive control of PEM fuel cell with guaranteed stability Optimal control of an autonomous underwater vehicle using IPSO_SQP algorithm Design of an on-line recurrent wavelet network controller for a class of nonlinear systems Exact pupil and iris boundary detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1