{"title":"PerDREP","authors":"Sanjoy Dey, Ping Zhang, D. Sow, Kenney Ng","doi":"10.1145/3292500.3330928","DOIUrl":null,"url":null,"abstract":"In contrast to the one-size-fits-all approach to medicine, precision medicine will allow targeted prescriptions based on the specific profile of the patient thereby avoiding adverse reactions and ineffective but expensive treatments. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for personalized medicine. In this paper, we propose a unified computational framework, called PerDREP, to predict the unique response patterns of each individual patient from EHR data. PerDREP models individual responses of each patient to the drug exposure by introducing a linear system to account for patients' heterogeneity, and incorporates a patient similarity graph as a network regularization. We formulate PerDREP as a convex optimization problem and develop an iterative gradient descent method to solve it. In the experiments, we identify the effect of drugs on Glycated hemoglobin test results. The experimental results provide evidence that the proposed method is not only more accurate than state-of-the-art methods, but is also able to automatically cluster patients into multiple coherent groups, thus paving the way for personalized medicine.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In contrast to the one-size-fits-all approach to medicine, precision medicine will allow targeted prescriptions based on the specific profile of the patient thereby avoiding adverse reactions and ineffective but expensive treatments. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for personalized medicine. In this paper, we propose a unified computational framework, called PerDREP, to predict the unique response patterns of each individual patient from EHR data. PerDREP models individual responses of each patient to the drug exposure by introducing a linear system to account for patients' heterogeneity, and incorporates a patient similarity graph as a network regularization. We formulate PerDREP as a convex optimization problem and develop an iterative gradient descent method to solve it. In the experiments, we identify the effect of drugs on Glycated hemoglobin test results. The experimental results provide evidence that the proposed method is not only more accurate than state-of-the-art methods, but is also able to automatically cluster patients into multiple coherent groups, thus paving the way for personalized medicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PerDREP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1