A Hidden Markov Model-Based Map-Matching Approach for Low-Sampling-Rate GPS Trajectories

Yu-Ling Hsueh, Ho-Chian Chen, Wei-Jie Huang
{"title":"A Hidden Markov Model-Based Map-Matching Approach for Low-Sampling-Rate GPS Trajectories","authors":"Yu-Ling Hsueh, Ho-Chian Chen, Wei-Jie Huang","doi":"10.1109/SC2.2017.52","DOIUrl":null,"url":null,"abstract":"Map matching is the process of matching a series of recorded geographic coordinates (e.g., a GPS trajectory) to a road network. Due to GPS positioning errors and the sampling constraints, the GPS data collected by the GPS devices are not precise, and the location of a user cannot always be correctly shown on the map. Unfortunately, most current map-matching algorithms only consider the distance between the GPS points and the road segments, the topology of the road network, and the speed constraint of the road segment to determine the matching results. In this paper, we propose a spatio-temporal based matching algorithm (STD-matching) for low-sampling-rate GPS trajectories. STD-matching considers the spatial features such as the distance information and topology of the road network, the speed constraints of the road network, and the realtime moving direction which shows the movement of the user. In our experiments, we compare STD-matching with three existing algorithms, the ST-matching algorithm, the stMM algorithm, and the HMM-RCM algorithm, using a real data set. The experiment results show that our STD-matching algorithm outperforms the three existing algorithms in terms of matching accuracy.","PeriodicalId":188326,"journal":{"name":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","volume":"73 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC2.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Map matching is the process of matching a series of recorded geographic coordinates (e.g., a GPS trajectory) to a road network. Due to GPS positioning errors and the sampling constraints, the GPS data collected by the GPS devices are not precise, and the location of a user cannot always be correctly shown on the map. Unfortunately, most current map-matching algorithms only consider the distance between the GPS points and the road segments, the topology of the road network, and the speed constraint of the road segment to determine the matching results. In this paper, we propose a spatio-temporal based matching algorithm (STD-matching) for low-sampling-rate GPS trajectories. STD-matching considers the spatial features such as the distance information and topology of the road network, the speed constraints of the road network, and the realtime moving direction which shows the movement of the user. In our experiments, we compare STD-matching with three existing algorithms, the ST-matching algorithm, the stMM algorithm, and the HMM-RCM algorithm, using a real data set. The experiment results show that our STD-matching algorithm outperforms the three existing algorithms in terms of matching accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于隐马尔可夫模型的低采样率GPS轨迹匹配方法
地图匹配是将一系列记录的地理坐标(例如GPS轨迹)与道路网络匹配的过程。由于GPS定位误差和采样限制,GPS设备收集的GPS数据并不精确,用户的位置并不总是能正确地显示在地图上。遗憾的是,目前大多数地图匹配算法仅考虑GPS点与道路段之间的距离、道路网络的拓扑结构以及道路段的速度约束来确定匹配结果。本文提出了一种基于时空的低采样率GPS轨迹匹配算法。std匹配考虑了道路网络的距离信息和拓扑结构等空间特征、道路网络的速度约束以及显示用户运动的实时运动方向。在实验中,我们使用真实数据集,将std匹配与现有的三种算法(st匹配算法、stMM算法和HMM-RCM算法)进行了比较。实验结果表明,我们的std匹配算法在匹配精度上优于现有的三种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayered Cloud Applications Autoscaling Performance Estimation Optimal Placement of Network Security Monitoring Functions in NFV-Enabled Data Centers Application-Aware Traffic Redirection: A Mobile Edge Computing Implementation Toward Future 5G Networks A Mobile Cloud-Based Biofeedback Platform for Evaluating Medication Response Platform-as-a-Service for Human-Based Applications: Ontology-Driven Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1