Evaluation of WiFi-Based Indoor (WBI) Positioning Algorithm

Ahed Aboodi, T. Wan
{"title":"Evaluation of WiFi-Based Indoor (WBI) Positioning Algorithm","authors":"Ahed Aboodi, T. Wan","doi":"10.1109/MUSIC.2012.52","DOIUrl":null,"url":null,"abstract":"This paper proposes an indoor positioning algorithm, WBI based on WiFi Received Signal Strength (RSS) technology in conjunction with trilateration techniques. The WBI algorithm estimates the location using RSS values previously collected from within the area of interest, determine whether it falls within the Min-Max bounding box, corrects for non-line-of-sight propagation effects on positioning errors using Kalman filtering, and finally update the location estimation using Least Square Estimation (LSE). The paper analyzes the complexity of the proposed algorithm and compares its performance against existing algorithms. Furthermore, the proposed WBI algorithm was able to achieve an average accuracy of 2.6 m.","PeriodicalId":260515,"journal":{"name":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MUSIC.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper proposes an indoor positioning algorithm, WBI based on WiFi Received Signal Strength (RSS) technology in conjunction with trilateration techniques. The WBI algorithm estimates the location using RSS values previously collected from within the area of interest, determine whether it falls within the Min-Max bounding box, corrects for non-line-of-sight propagation effects on positioning errors using Kalman filtering, and finally update the location estimation using Least Square Estimation (LSE). The paper analyzes the complexity of the proposed algorithm and compares its performance against existing algorithms. Furthermore, the proposed WBI algorithm was able to achieve an average accuracy of 2.6 m.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于wifi的室内定位算法评价
本文提出了一种基于WiFi接收信号强度(RSS)技术与三边定位技术相结合的室内定位算法WBI。WBI算法使用先前从感兴趣区域内收集的RSS值来估计位置,确定它是否落在最小-最大边界框内,使用卡尔曼滤波校正非视距传播对定位误差的影响,最后使用最小二乘估计(LSE)更新位置估计。分析了该算法的复杂性,并与现有算法进行了性能比较。此外,所提出的WBI算法能够达到2.6 m的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Source-Based Share-Tree Like Multicast Routing in Satellite Constellation Networks An Empirical Case of a Context-Aware Mobile Recommender System in a Banking Environment Generating OWL Ontology from Relational Database Data Overhead Impact of Multipath Routing for Multicast in Wireless Mesh Networks UVote: A Ubiquitous E-voting System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1