Y. Ha, T. Tobita, H. Takamizawa, S. Hanawa, Y. Nishiyama
{"title":"Fracture Toughness Evaluation of Heat-Affected Zone Under Weld Overlay Cladding in Reactor Pressure Vessel Steel","authors":"Y. Ha, T. Tobita, H. Takamizawa, S. Hanawa, Y. Nishiyama","doi":"10.1115/PVP2018-84535","DOIUrl":null,"url":null,"abstract":"An evaluation of the fracture toughness of the heat-affected zone (HAZ), which is located under the weld overlay cladding of a reactor pressure vessel (RPV), was performed. Considering inhomogeneous microstructures of the HAZ, 0.4T-C(T) specimens were manufactured from the cladding strips locations, and Mini-C(T) specimens were fabricated from the distanced location as well as under the cladding. The reference temperature (To) of specimens that were aligned with the middle section of a cladding strip (HAZMCS) was ∼12°C higher than that of specimens that were aligned with cladding strips at the overlap (HAZOCS). To values of partial area in the HAZ were obtained using Mini-C(T) specimen. The To values obtained near the side of the cladding were ∼13°C higher than those away from the cladding. To values of HAZ for both 0.4T-C(T) and Mini-C(T) specimens were significantly lower than that of the base metal at a quarter thickness by 40°C–60°C. Compared to the literature data that indicated fracture toughness at the surface without overlay cladding and base metal of a quarter thickness in a pressure vessel plate, this study concluded that the welding thermal history showed no significant effect on the fracture toughness of the inner surface of RPV steel.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An evaluation of the fracture toughness of the heat-affected zone (HAZ), which is located under the weld overlay cladding of a reactor pressure vessel (RPV), was performed. Considering inhomogeneous microstructures of the HAZ, 0.4T-C(T) specimens were manufactured from the cladding strips locations, and Mini-C(T) specimens were fabricated from the distanced location as well as under the cladding. The reference temperature (To) of specimens that were aligned with the middle section of a cladding strip (HAZMCS) was ∼12°C higher than that of specimens that were aligned with cladding strips at the overlap (HAZOCS). To values of partial area in the HAZ were obtained using Mini-C(T) specimen. The To values obtained near the side of the cladding were ∼13°C higher than those away from the cladding. To values of HAZ for both 0.4T-C(T) and Mini-C(T) specimens were significantly lower than that of the base metal at a quarter thickness by 40°C–60°C. Compared to the literature data that indicated fracture toughness at the surface without overlay cladding and base metal of a quarter thickness in a pressure vessel plate, this study concluded that the welding thermal history showed no significant effect on the fracture toughness of the inner surface of RPV steel.