Invariance Through Latent Alignment

Takuma Yoneda, Ge Yang, Matthew R. Walter, Bradly C. Stadie
{"title":"Invariance Through Latent Alignment","authors":"Takuma Yoneda, Ge Yang, Matthew R. Walter, Bradly C. Stadie","doi":"10.15607/rss.2022.xviii.064","DOIUrl":null,"url":null,"abstract":"A robot's deployment environment often involves perceptual changes that differ from what it has experienced during training. Standard practices such as data augmentation attempt to bridge this gap by augmenting source images in an effort to extend the support of the training distribution to better cover what the agent might experience at test time. In many cases, however, it is impossible to know test-time distribution-shift a priori, making these schemes infeasible. In this paper, we introduce a general approach, called Invariance Through Latent Alignment (ILA), that improves the test-time performance of a visuomotor control policy in deployment environments with unknown perceptual variations. ILA performs unsupervised adaptation at deployment-time by matching the distribution of latent features on the target domain to the agent's prior experience, without relying on paired data. Although simple, we show that this idea leads to surprising improvements on a variety of challenging adaptation scenarios, including changes in lighting conditions, the content in the scene, and camera poses. We present results on calibrated control benchmarks in simulation -- the distractor control suite -- and a physical robot under a sim-to-real setup.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A robot's deployment environment often involves perceptual changes that differ from what it has experienced during training. Standard practices such as data augmentation attempt to bridge this gap by augmenting source images in an effort to extend the support of the training distribution to better cover what the agent might experience at test time. In many cases, however, it is impossible to know test-time distribution-shift a priori, making these schemes infeasible. In this paper, we introduce a general approach, called Invariance Through Latent Alignment (ILA), that improves the test-time performance of a visuomotor control policy in deployment environments with unknown perceptual variations. ILA performs unsupervised adaptation at deployment-time by matching the distribution of latent features on the target domain to the agent's prior experience, without relying on paired data. Although simple, we show that this idea leads to surprising improvements on a variety of challenging adaptation scenarios, including changes in lighting conditions, the content in the scene, and camera poses. We present results on calibrated control benchmarks in simulation -- the distractor control suite -- and a physical robot under a sim-to-real setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过潜在对齐的不变性
机器人的部署环境通常涉及不同于它在训练期间所经历的感知变化。诸如数据增强之类的标准实践试图通过增强源图像来弥合这一差距,从而努力扩展训练分布的支持,以更好地覆盖代理在测试时可能经历的内容。然而,在许多情况下,不可能先验地知道测试时间分布位移,使得这些方案不可行。在本文中,我们介绍了一种通用的方法,称为通过潜在对齐的不变性(ILA),它提高了视觉运动控制策略在具有未知感知变化的部署环境中的测试时间性能。通过将目标域上潜在特征的分布与智能体先前的经验相匹配,而不依赖于配对数据,ILA在部署时执行无监督自适应。虽然简单,但我们表明,这个想法导致了各种具有挑战性的适应场景的惊人改进,包括照明条件的变化,场景中的内容和相机姿势。我们在模拟中展示了校准控制基准的结果-分心控制套件-以及模拟到真实设置下的物理机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Underwater Robot-To-Human Communication Via Motion: Implementation and Full-Loop Human Interface Evaluation Meta Value Learning for Fast Policy-Centric Optimal Motion Planning A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles Aerial Layouting: Design and Control of a Compliant and Actuated End-Effector for Precise In-flight Marking on Ceilings Occupancy-SLAM: Simultaneously Optimizing Robot Poses and Continuous Occupancy Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1