Dynamic Texture Analysis Using Auto-correlation Function of Histogram Similarity Measure From Galois-Field Texture Representation of Water Flow Video

B. Sirenden, P. Mursanto, S. Wijonarko
{"title":"Dynamic Texture Analysis Using Auto-correlation Function of Histogram Similarity Measure From Galois-Field Texture Representation of Water Flow Video","authors":"B. Sirenden, P. Mursanto, S. Wijonarko","doi":"10.1109/ICRAMET51080.2020.9298601","DOIUrl":null,"url":null,"abstract":"This paper propose a method for determining the periodicity of dynamic textures from water video using spatial feature similarity measure of Galois-Field (GF) texture representation. Auto correlation function are use to analyze the extracted spatial feature from the representation to determine the periodicity of dynamic textures. There are two type of spatial feature to be compared, the first is histogram and second is normalize cumulative histogram (NCH). Two type of experiment are conducted, the first is virtual rotation where video is rotated virtually from 0o until 360o, the second is actual rotation where camera are rotated physically. Experiments show that although GF improves the performance of the Histogram similarity measure, overall NCH shows better performance. In virtual rotation experiment, GF representation prove to minimize variability due to rotation of camera, the maximum variability produce by NCH is 27%, while when GF are not use the maximum variability is 106%. Contrary, in actual rotation experiment, GF is not proven to minimize variability where NCH produce maximum variability is 57%, while where GF are not use the maximum variability is 9%. The difference in variability pattern between virtual and actual rotation, shows that Galois Field is good at handling dynamic texture rotation, but not against other factors that affect variability.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper propose a method for determining the periodicity of dynamic textures from water video using spatial feature similarity measure of Galois-Field (GF) texture representation. Auto correlation function are use to analyze the extracted spatial feature from the representation to determine the periodicity of dynamic textures. There are two type of spatial feature to be compared, the first is histogram and second is normalize cumulative histogram (NCH). Two type of experiment are conducted, the first is virtual rotation where video is rotated virtually from 0o until 360o, the second is actual rotation where camera are rotated physically. Experiments show that although GF improves the performance of the Histogram similarity measure, overall NCH shows better performance. In virtual rotation experiment, GF representation prove to minimize variability due to rotation of camera, the maximum variability produce by NCH is 27%, while when GF are not use the maximum variability is 106%. Contrary, in actual rotation experiment, GF is not proven to minimize variability where NCH produce maximum variability is 57%, while where GF are not use the maximum variability is 9%. The difference in variability pattern between virtual and actual rotation, shows that Galois Field is good at handling dynamic texture rotation, but not against other factors that affect variability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直方图相似度自相关函数的水流视频伽罗瓦场纹理分析
本文提出了一种基于伽罗瓦场(GF)纹理表示的空间特征相似性度量来确定水视频动态纹理周期性的方法。利用自相关函数对提取的空间特征进行分析,确定动态纹理的周期性。有两种类型的空间特征进行比较,第一种是直方图,第二种是归一化累积直方图(NCH)。进行了两种实验,第一种是虚拟旋转,视频从0°虚拟旋转到360°,第二种是实际旋转,摄像机物理旋转。实验表明,虽然GF提高了直方图相似度度量的性能,但总体上NCH表现出更好的性能。在虚拟旋转实验中,GF表示证明了最小化摄像机旋转引起的变异性,NCH产生的最大变异性为27%,而不使用GF时的最大变异性为106%。相反,在实际的旋转实验中,没有证明GF可以最小化变异,其中NCH产生的最大变异为57%,而在不使用GF的情况下,最大变异为9%。虚拟旋转和实际旋转的可变性模式的差异表明,伽罗瓦场在处理动态纹理旋转方面表现良好,但在处理其他影响可变性的因素方面表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning for Dengue Fever Event Detection Using Online News Screen Printed Electrochemical Sensor for Ascorbic Acid Detection Based on Nafion/Ionic Liquids/Graphene Composite on Carbon Electrodes Implementation Array-Slotted Miliwires in Artificial Dielectric Material on Waveguide Filters Te10 Mode Path Loss Model of the Maritime Wireless Communication in the Seas of Indonesia Modeling of Low-Resolution Face Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1