Chapter 4. PSM Scoring and Validation

James C. Wright, J. Choudhary
{"title":"Chapter 4. PSM Scoring and Validation","authors":"James C. Wright, J. Choudhary","doi":"10.1039/9781782626732-00069","DOIUrl":null,"url":null,"abstract":"Identification and quantification of proteins by shotgun proteomics experiments is underpinned by the use of accurate masses and fragmentation patterns generated by tandem mass spectrometry. Assigning peptide sequences to tandem MS data is supported by a plethora of informatics tools. The majority of spectral identification software report arbitrary fitness scores reflecting the quality of a match, however, valid statistical metrics must be used to make sense of these scores and attribute a confidence to the peptide identifications. Accurately estimating the error and devising filtering routines to minimise incorrect and random identifications is essential for making valid and reproducible conclusions about the biology of the sample being analysed. This chapter discusses the statistical approaches used to evaluate and validate shotgun proteomics peptide to spectrum matches and provides a summary of software available for this purpose.","PeriodicalId":192946,"journal":{"name":"Proteome Informatics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781782626732-00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification and quantification of proteins by shotgun proteomics experiments is underpinned by the use of accurate masses and fragmentation patterns generated by tandem mass spectrometry. Assigning peptide sequences to tandem MS data is supported by a plethora of informatics tools. The majority of spectral identification software report arbitrary fitness scores reflecting the quality of a match, however, valid statistical metrics must be used to make sense of these scores and attribute a confidence to the peptide identifications. Accurately estimating the error and devising filtering routines to minimise incorrect and random identifications is essential for making valid and reproducible conclusions about the biology of the sample being analysed. This chapter discusses the statistical approaches used to evaluate and validate shotgun proteomics peptide to spectrum matches and provides a summary of software available for this purpose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第四章。PSM评分和验证
通过霰弹枪蛋白质组学实验鉴定和定量蛋白质是基于使用精确的质量和片段模式产生的串联质谱。分配肽序列串联质谱数据是由大量的信息学工具的支持。大多数光谱识别软件报告任意的适应度分数反映匹配的质量,然而,必须使用有效的统计度量来理解这些分数,并将置信度归为肽识别。准确估计误差和设计过滤程序,以尽量减少不正确和随机的识别是必不可少的,对被分析样品的生物学作出有效和可重复的结论。本章讨论了用于评估和验证散弹枪蛋白质组学肽与光谱匹配的统计方法,并提供了可用于此目的的软件摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chapter 8. MS2-Based Quantitation Chapter 10. Data Analysis for Data Independent Acquisition Chapter 16. Proteomics Informed by Transcriptomics Chapter 3. Peptide Spectrum Matching via Database Search and Spectral Library Search Chapter 1. Introduction to Proteome Informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1