Influence of Freestream Vortical Structures on Stagnation Region Heat Transfer

A. Oo, C. Ching
{"title":"Influence of Freestream Vortical Structures on Stagnation Region Heat Transfer","authors":"A. Oo, C. Ching","doi":"10.1115/imece2000-1457","DOIUrl":null,"url":null,"abstract":"\n An experimental study was performed to investigate the influence of freestream vortical structures on stagnation region heat transfer. A heat transfer model with a cylindrical leading edge was tested in a low speed wind tunnel at Reynolds numbers ranging from 67,750 to 142,250 based on leading edge diameter of the model. Turbulence generating grids of parallel rods of diameter, 2.86 cm, 1.59 cm and 0.95 cm, were placed upstream of the heat transfer model in horizontal and vertical orientations to generate freestream turbulence with different orientations of vortical structures. The rods in horizontal orientation were perpendicular to the stagnation line and those in vertical orientation were parallel to the stagnation line of the heat transfer model. The distance between the grid and heat transfer model was varied from 25 to 125 rod diameters. The grids with rods in the horizontal orientation, where the primary vortical structures are expected to be perpendicular to the stagnation line, result in higher heat transfer than with the grids where the rods are in the vertical orientation. The difference in heat transfer with the two grid orientations decreases with increasing grid-to-model distance for a given rod-grid. The difference also decreases with decreasing rod size for a given normalized grid-to-model distance. For the 2.86 cm rod-grid, the difference in heat transfer augmentation between horizontal and vertical grid-orientations is highest at the stagnation line and decreases with streamwise distance. This difference, however, remains fairly constant over the whole stagnation region for the 1.59 cm and 0.95 cm rod-grids.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental study was performed to investigate the influence of freestream vortical structures on stagnation region heat transfer. A heat transfer model with a cylindrical leading edge was tested in a low speed wind tunnel at Reynolds numbers ranging from 67,750 to 142,250 based on leading edge diameter of the model. Turbulence generating grids of parallel rods of diameter, 2.86 cm, 1.59 cm and 0.95 cm, were placed upstream of the heat transfer model in horizontal and vertical orientations to generate freestream turbulence with different orientations of vortical structures. The rods in horizontal orientation were perpendicular to the stagnation line and those in vertical orientation were parallel to the stagnation line of the heat transfer model. The distance between the grid and heat transfer model was varied from 25 to 125 rod diameters. The grids with rods in the horizontal orientation, where the primary vortical structures are expected to be perpendicular to the stagnation line, result in higher heat transfer than with the grids where the rods are in the vertical orientation. The difference in heat transfer with the two grid orientations decreases with increasing grid-to-model distance for a given rod-grid. The difference also decreases with decreasing rod size for a given normalized grid-to-model distance. For the 2.86 cm rod-grid, the difference in heat transfer augmentation between horizontal and vertical grid-orientations is highest at the stagnation line and decreases with streamwise distance. This difference, however, remains fairly constant over the whole stagnation region for the 1.59 cm and 0.95 cm rod-grids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由流涡旋结构对滞止区传热的影响
通过实验研究了自由流涡旋结构对滞止区换热的影响。在低速风洞中对圆柱型前缘传热模型进行了试验研究,试验雷诺数为67,750 ~ 142,250。将直径分别为2.86 cm、1.59 cm和0.95 cm的平行棒组成的湍流生成网格以水平和垂直方向放置在传热模型的上游,产生不同垂直结构方向的自由流湍流。水平方向的棒材垂直于传热模型的停滞线,垂直方向的棒材平行于传热模型的停滞线。网格与传热模型之间的距离从25到125杆直径不等。在水平方向上有杆的网格,其中主要的旋涡结构被期望垂直于停滞线,导致更高的传热比在垂直方向上有杆的网格。对于给定的栅格,随着栅格到模型距离的增加,两个栅格方向的换热差减小。对于给定的归一化网格到模型的距离,差异也随着杆尺寸的减小而减小。对于2.86 cm的栅格,水平和垂直栅格方向之间的换热增益差异在停滞线处最大,并随着沿流距离的增加而减小。然而,对于1.59厘米和0.95厘米的栅格,这种差异在整个停滞区域内保持相当恒定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1