Planning for a Big Bang in a Supply Chain: Fast Hedging for Production Indicators

D. L. Woodruff, S. Voß
{"title":"Planning for a Big Bang in a Supply Chain: Fast Hedging for Production Indicators","authors":"D. L. Woodruff, S. Voß","doi":"10.1109/HICSS.2006.380","DOIUrl":null,"url":null,"abstract":"We concern ourselves with the process of making optimized production planning decisions in the face of low frequency, high impact uncertainty, which takes the form of a small number of discrete scenarios. Computational results provide evidence that the computational effort for the full stochastic mixed integer problem can be reduced by first solving scenario sub-problems and then blending them to find values for some of the binary variables.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We concern ourselves with the process of making optimized production planning decisions in the face of low frequency, high impact uncertainty, which takes the form of a small number of discrete scenarios. Computational results provide evidence that the computational effort for the full stochastic mixed integer problem can be reduced by first solving scenario sub-problems and then blending them to find values for some of the binary variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
供应链大爆炸的规划:生产指标的快速对冲
我们关注的是在面对低频率、高影响的不确定性时做出优化生产计划决策的过程,这种不确定性以少量离散情景的形式出现。计算结果表明,首先求解场景子问题,然后将它们混合以求得某些二元变量的值,可以减少全随机混合整数问题的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting the Module Sequencing Decision in the ERP Implementation Process Flying Sinks: Heuristics for Movement in Sensor Networks Enterprise Architecture: A Social Network Perspective Document Clustering with Semantic Analysis Knowledge Extraction from Prostate Cancer Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1