Automatic QRS Detection and Segmentation Using Short Time Fourier Transform and Feature Fusion

A. Biran, A. Jeremic
{"title":"Automatic QRS Detection and Segmentation Using Short Time Fourier Transform and Feature Fusion","authors":"A. Biran, A. Jeremic","doi":"10.1109/CCECE47787.2020.9255676","DOIUrl":null,"url":null,"abstract":"QRS detection from an electrocardiogram (ECG) is potentially useful tool in many applications such as diagnosing cardiac diseases, bio-identification, bio-encryption, etc. In this paper, we present an automated algorithm for detecting QRS waves and segmenting ECG signal into separate beats using short time Fourier transform (STFT) and multi-channel ECG feature-based classification. We test the performance of our algorithm using ECG signals of 62 subjects from the ECG ID public database. The results show that our method is capable of extracting QRS waves with 99.45% average QRS segmentation accuracy.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

QRS detection from an electrocardiogram (ECG) is potentially useful tool in many applications such as diagnosing cardiac diseases, bio-identification, bio-encryption, etc. In this paper, we present an automated algorithm for detecting QRS waves and segmenting ECG signal into separate beats using short time Fourier transform (STFT) and multi-channel ECG feature-based classification. We test the performance of our algorithm using ECG signals of 62 subjects from the ECG ID public database. The results show that our method is capable of extracting QRS waves with 99.45% average QRS segmentation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于短时傅里叶变换和特征融合的QRS自动检测与分割
从心电图(ECG)检测QRS是一个潜在的有用的工具,在许多应用,如诊断心脏疾病,生物识别,生物加密等。本文提出了一种基于短时傅立叶变换(STFT)和多通道心电特征分类的自动检测QRS波并将心电信号分割成独立拍的算法。我们使用来自心电ID公共数据库的62个受试者的心电信号来测试算法的性能。结果表明,该方法能够提取QRS波,QRS平均分割准确率为99.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Control of Force, Position, and Contour for an Excavator with Co-simulation Dual-Modality Cardiac Data Real-Time Rendering and Synchronization in Web Browsers FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis A New Capacitive MEMS Flow Sensor for Industrial Gas Transport Monitoring Applications Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1