TCEP

Manisha Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, Raheel Arif
{"title":"TCEP","authors":"Manisha Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, Raheel Arif","doi":"10.1145/3210284.3210292","DOIUrl":null,"url":null,"abstract":"Operator placement has a profound impact on the performance of a distributed complex event processing system (DCEP). Since the behavior of a placement mechanism strongly depends on its environment; a single placement mechanism is often not enough to fulfill stringent performance requirements under environmental changes. In this paper, we show how DCEP can benefit from the adaptive use of multiple placement mechanisms. We propose Tcep, a DCEP system to integrate multiple placement mechanisms. By enabling transitions, Tcep can seamlessly exchange distinct operator mechanisms at runtime. We make two main contributions that are highly important for a cost-efficient transition: i) a transition strategy for efficiently scheduling state migrations and ii) a lightweight learning algorithm to adaptively select an appropriate placement mechanism as a consequence of a transition. Our evaluations for important decentralized placement mechanisms in the context of an IoT scenario show that transitions can better fulfill QoS demands in a dynamic environment. Thereby efficient scheduling of state migrations can help to faster complete transitions by up to 94 %.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3210292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Operator placement has a profound impact on the performance of a distributed complex event processing system (DCEP). Since the behavior of a placement mechanism strongly depends on its environment; a single placement mechanism is often not enough to fulfill stringent performance requirements under environmental changes. In this paper, we show how DCEP can benefit from the adaptive use of multiple placement mechanisms. We propose Tcep, a DCEP system to integrate multiple placement mechanisms. By enabling transitions, Tcep can seamlessly exchange distinct operator mechanisms at runtime. We make two main contributions that are highly important for a cost-efficient transition: i) a transition strategy for efficiently scheduling state migrations and ii) a lightweight learning algorithm to adaptively select an appropriate placement mechanism as a consequence of a transition. Our evaluations for important decentralized placement mechanisms in the context of an IoT scenario show that transitions can better fulfill QoS demands in a dynamic environment. Thereby efficient scheduling of state migrations can help to faster complete transitions by up to 94 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1