DeepVista: 16K Panoramic Cinema on Your Mobile Device

Wenxiao Zhang, Feng Qian, B. Han, P. Hui
{"title":"DeepVista: 16K Panoramic Cinema on Your Mobile Device","authors":"Wenxiao Zhang, Feng Qian, B. Han, P. Hui","doi":"10.1145/3442381.3449829","DOIUrl":null,"url":null,"abstract":"In this paper, we design, implement, and evaluate , which is to our knowledge the first consumer-class system that streams panoramic videos far beyond the ultra high-definition resolution (up to 16K) to mobile devices, offering truly immersive experiences. Such an immense resolution makes streaming video-on-demand (VoD) content extremely resource-demanding. To tackle this challenge, introduces a novel framework that leverages an edge server to perform efficient, intelligent, and quality-guaranteed content transcoding, by extracting from panoramic frames the viewport stream that will be delivered to the client. To support real-time transcoding of 16K content, employs several key mechanisms such as dual-GPU acceleration, lossless viewport extraction, deep viewport prediction, and a two-layer streaming design. Our extensive evaluations using real users’ viewport movement data indicate that outperforms existing solutions, and can smoothly stream 16K panoramic videos to mobile devices over diverse wireless networks including WiFi, LTE, and mmWave 5G.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we design, implement, and evaluate , which is to our knowledge the first consumer-class system that streams panoramic videos far beyond the ultra high-definition resolution (up to 16K) to mobile devices, offering truly immersive experiences. Such an immense resolution makes streaming video-on-demand (VoD) content extremely resource-demanding. To tackle this challenge, introduces a novel framework that leverages an edge server to perform efficient, intelligent, and quality-guaranteed content transcoding, by extracting from panoramic frames the viewport stream that will be delivered to the client. To support real-time transcoding of 16K content, employs several key mechanisms such as dual-GPU acceleration, lossless viewport extraction, deep viewport prediction, and a two-layer streaming design. Our extensive evaluations using real users’ viewport movement data indicate that outperforms existing solutions, and can smoothly stream 16K panoramic videos to mobile devices over diverse wireless networks including WiFi, LTE, and mmWave 5G.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepVista:移动设备上的16K全景影院
在本文中,我们设计,实现和评估,据我们所知,这是第一个消费者级系统,将全景视频远远超过超高清分辨率(高达16K)传输到移动设备,提供真正的沉浸式体验。如此高的分辨率使得流媒体视频点播(VoD)内容非常需要资源。为了应对这一挑战,我们引入了一个新的框架,通过从全景帧中提取将交付给客户端的视口流,该框架利用边缘服务器来执行高效、智能和有质量保证的内容转码。为了支持16K内容的实时转码,采用了几个关键机制,如双gpu加速、无损视口提取、深度视口预测和两层流设计。我们使用真实用户的视口移动数据进行的广泛评估表明,它优于现有的解决方案,并且可以通过各种无线网络(包括WiFi, LTE和毫米波5G)顺畅地将16K全景视频流式传输到移动设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1