{"title":"Optimizing the k-NN metric weights using differential evolution","authors":"A. AlSukker, R. Khushaba, A. Al-Ani","doi":"10.1109/MCIT.2010.5444845","DOIUrl":null,"url":null,"abstract":"Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number of instances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"51 345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number of instances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance.