Optimizing the k-NN metric weights using differential evolution

A. AlSukker, R. Khushaba, A. Al-Ani
{"title":"Optimizing the k-NN metric weights using differential evolution","authors":"A. AlSukker, R. Khushaba, A. Al-Ani","doi":"10.1109/MCIT.2010.5444845","DOIUrl":null,"url":null,"abstract":"Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number of instances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"51 345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Traditional k-NN classifier poses many limitations including that it does not take into account each class distribution, importance of each feature, contribution of each neighbor, and the number of instances for each class. A Differential evolution (DE) optimization technique is utilized to enhance the performance of k-NN through optimizing the metric weights of features, neighbors and classes. Several datasets are used to evaluate the performance of the proposed DE based metrics and to compare it to some k-NN variants from the literature. Practical experiments indicate that in most cases, incorporating DE in k-NN classification can provide more accurate performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用差分进化优化k-NN度量权值
传统的k-NN分类器存在许多局限性,包括它没有考虑每个类的分布、每个特征的重要性、每个邻居的贡献以及每个类的实例数量。利用差分进化(DE)优化技术,通过优化特征、邻域和类的度量权重来提高k-NN的性能。使用几个数据集来评估所提出的基于DE的指标的性能,并将其与文献中的一些k-NN变体进行比较。实际实验表明,在大多数情况下,在k-NN分类中加入DE可以提供更准确的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1