From digital forensic report to Bayesian network representation

Robert Lee, S. Lang, Kevin Stenger
{"title":"From digital forensic report to Bayesian network representation","authors":"Robert Lee, S. Lang, Kevin Stenger","doi":"10.1109/ISI.2009.5137330","DOIUrl":null,"url":null,"abstract":"Computer (digital) forensic examiners typically write a report to document the examination process, including tools used, major processing steps, summary of the findings, and a detailed listing of relevant evidence (files, artifacts) exported to external media (CD, DVD, hard copy) for the case investigator or attorney. However, proper interpretation of the significance of extracted evidence often requires additional consultation with the examiner. This paper proposes a practical methodology for transforming the findings in typical forensic reports to a graphical representation using Bayesian networks (BNs). BNs offer the following advantages: (1) Delineate the cause-effect relationship among relevant pieces of evidence described in the report; and (2) Use probability and established Bayesian inference rules to deal with uncertainty of digital evidence. A realistic forensic report is used to demonstrate this methodology.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Computer (digital) forensic examiners typically write a report to document the examination process, including tools used, major processing steps, summary of the findings, and a detailed listing of relevant evidence (files, artifacts) exported to external media (CD, DVD, hard copy) for the case investigator or attorney. However, proper interpretation of the significance of extracted evidence often requires additional consultation with the examiner. This paper proposes a practical methodology for transforming the findings in typical forensic reports to a graphical representation using Bayesian networks (BNs). BNs offer the following advantages: (1) Delineate the cause-effect relationship among relevant pieces of evidence described in the report; and (2) Use probability and established Bayesian inference rules to deal with uncertainty of digital evidence. A realistic forensic report is used to demonstrate this methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数字取证报告到贝叶斯网络表示
计算机(数字)法医审查员通常会写一份报告来记录检查过程,包括使用的工具、主要处理步骤、发现的摘要,以及导出到外部媒体(CD、DVD、硬拷贝)的相关证据(文件、文物)的详细清单,以供案件调查员或律师使用。然而,正确解释提取证据的重要性往往需要与审查员进行额外的磋商。本文提出了一种实用的方法,将典型的法医报告中的发现转化为使用贝叶斯网络(BNs)的图形表示。BNs具有以下优势:(1)描述报告中描述的相关证据之间的因果关系;(2)利用概率和建立的贝叶斯推理规则来处理数字证据的不确定性。一份现实的法医报告被用来证明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social network classification incorporating link type values Weaving ontologies to support digital forensic analysis Building a better password: The role of cognitive load in information security training Web opinions analysis with scalable distance-based clustering A Higher Order Collective Classifier for detecting and classifying network events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1