Memory-efficient parallel tensor decompositions

M. Baskaran, Thomas Henretty, B. Pradelle, M. H. Langston, David Bruns-Smith, J. Ezick, R. Lethin
{"title":"Memory-efficient parallel tensor decompositions","authors":"M. Baskaran, Thomas Henretty, B. Pradelle, M. H. Langston, David Bruns-Smith, J. Ezick, R. Lethin","doi":"10.1109/HPEC.2017.8091026","DOIUrl":null,"url":null,"abstract":"Tensor decompositions are a powerful technique for enabling comprehensive and complete analysis of real-world data. Data analysis through tensor decompositions involves intensive computations over large-scale irregular sparse data. Optimizing the execution of such data intensive computations is key to reducing the time-to-solution (or response time) in real-world data analysis applications. As high-performance computing (HPC) systems are increasingly used for data analysis applications, it is becoming increasingly important to optimize sparse tensor computations and execute them efficiently on modern and advanced HPC systems. In addition to utilizing the large processing capability of HPC systems, it is crucial to improve memory performance (memory usage, communication, synchronization, memory reuse, and data locality) in HPC systems. In this paper, we present multiple optimizations that are targeted towards faster and memory-efficient execution of large-scale tensor analysis on HPC systems. We demonstrate that our techniques achieve reduction in memory usage and execution time of tensor decomposition methods when they are applied on multiple datasets of varied size and structure from different application domains. We achieve up to 11× reduction in memory usage and up to 7× improvement in performance. More importantly, we enable the application of large tensor decompositions on some important datasets on a multi-core system that would not have been feasible without our optimization.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Tensor decompositions are a powerful technique for enabling comprehensive and complete analysis of real-world data. Data analysis through tensor decompositions involves intensive computations over large-scale irregular sparse data. Optimizing the execution of such data intensive computations is key to reducing the time-to-solution (or response time) in real-world data analysis applications. As high-performance computing (HPC) systems are increasingly used for data analysis applications, it is becoming increasingly important to optimize sparse tensor computations and execute them efficiently on modern and advanced HPC systems. In addition to utilizing the large processing capability of HPC systems, it is crucial to improve memory performance (memory usage, communication, synchronization, memory reuse, and data locality) in HPC systems. In this paper, we present multiple optimizations that are targeted towards faster and memory-efficient execution of large-scale tensor analysis on HPC systems. We demonstrate that our techniques achieve reduction in memory usage and execution time of tensor decomposition methods when they are applied on multiple datasets of varied size and structure from different application domains. We achieve up to 11× reduction in memory usage and up to 7× improvement in performance. More importantly, we enable the application of large tensor decompositions on some important datasets on a multi-core system that would not have been feasible without our optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内存高效并行张量分解
张量分解是一种强大的技术,可以对现实世界的数据进行全面和完整的分析。通过张量分解进行数据分析需要对大规模不规则稀疏数据进行密集计算。在实际数据分析应用程序中,优化这种数据密集型计算的执行是减少到解决方案的时间(或响应时间)的关键。随着高性能计算(HPC)系统越来越多地用于数据分析应用,优化稀疏张量计算并在现代和先进的HPC系统上高效执行变得越来越重要。除了利用HPC系统的大型处理能力之外,提高HPC系统中的内存性能(内存使用、通信、同步、内存重用和数据位置)也至关重要。在本文中,我们提出了针对HPC系统上大规模张量分析的更快和内存效率执行的多种优化。我们证明,当我们的技术应用于来自不同应用领域的不同大小和结构的多个数据集时,我们的技术可以减少张量分解方法的内存使用和执行时间。我们实现了高达11倍的内存使用减少和高达7倍的性能提高。更重要的是,我们能够在多核系统上的一些重要数据集上应用大张量分解,如果没有我们的优化,这些数据集是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1