An Improved Object Detection Algorithm Based on M2Det

Tao Zhang, Linwei Li
{"title":"An Improved Object Detection Algorithm Based on M2Det","authors":"Tao Zhang, Linwei Li","doi":"10.1109/ICAICA50127.2020.9181938","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved target detection algorithm based on M2Det, which improves the way to construct feature pyramids in M2Det, and improves the detection accuracy on the Apple dataset by stacking MLFPN modules. The experimental results prove that the two-layer MLFPN module achieves the best performance. Compared with the original M2Det model, mAP@0.5 and mAP@0.75 have improved by 11.8 and 10.5, respectively.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9181938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes an improved target detection algorithm based on M2Det, which improves the way to construct feature pyramids in M2Det, and improves the detection accuracy on the Apple dataset by stacking MLFPN modules. The experimental results prove that the two-layer MLFPN module achieves the best performance. Compared with the original M2Det model, mAP@0.5 and mAP@0.75 have improved by 11.8 and 10.5, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的M2Det目标检测算法
本文提出了一种改进的基于M2Det的目标检测算法,改进了M2Det中特征金字塔的构造方法,并通过MLFPN模块的叠加提高了在Apple数据集上的检测精度。实验结果表明,两层MLFPN模块达到了最佳性能。与原来的M2Det模型相比,mAP@0.5和mAP@0.75分别提高了11.8和10.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1