K. Abdul-Rahman, S. M. Shahidehpour, M. Aganagic, S. Mokhtari
{"title":"A practical resource scheduling with OPF constraints","authors":"K. Abdul-Rahman, S. M. Shahidehpour, M. Aganagic, S. Mokhtari","doi":"10.1109/PICA.1995.515170","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach to short term power system resource scheduling based on the augmented Lagrangian relaxation method. The problem is divided into two stages, the commitment stage and the constrained economic dispatch stage. The proposed mathematical model incorporates optimal power flow (OPF) constraints in the unit commitment stage. By OPF constrains, the authors refer to the relevant active power constraints that are incorporated in the constrained economic dispatch stage (i.e. transmission capacity constraints, fuel and various regulated emission requirements). The inclusion of OPF constraints in the commitment stage will improve the feasibility of the constrained economic dispatch solution. Other unit commitment constraints such as spinning and operating reserve requirements, power balance as well as other relevant local constraints (i.e. unit ramping rates, upper and lower generation limits, minimum up and down times) are taken into account in the proposed model. As a larger number of constraints are dealt with, a more rigorous method is introduced for updating Lagrange multipliers to improve the solution convergence. A software package which addresses energy management systems requirements is developed and tested.","PeriodicalId":294493,"journal":{"name":"Proceedings of Power Industry Computer Applications Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Power Industry Computer Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1995.515170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109
Abstract
This paper presents an efficient approach to short term power system resource scheduling based on the augmented Lagrangian relaxation method. The problem is divided into two stages, the commitment stage and the constrained economic dispatch stage. The proposed mathematical model incorporates optimal power flow (OPF) constraints in the unit commitment stage. By OPF constrains, the authors refer to the relevant active power constraints that are incorporated in the constrained economic dispatch stage (i.e. transmission capacity constraints, fuel and various regulated emission requirements). The inclusion of OPF constraints in the commitment stage will improve the feasibility of the constrained economic dispatch solution. Other unit commitment constraints such as spinning and operating reserve requirements, power balance as well as other relevant local constraints (i.e. unit ramping rates, upper and lower generation limits, minimum up and down times) are taken into account in the proposed model. As a larger number of constraints are dealt with, a more rigorous method is introduced for updating Lagrange multipliers to improve the solution convergence. A software package which addresses energy management systems requirements is developed and tested.