Detecting harassment in real-time as conversations develop

Wessel Stoop, Florian Kunneman, Antal van den Bosch, B. Miller
{"title":"Detecting harassment in real-time as conversations develop","authors":"Wessel Stoop, Florian Kunneman, Antal van den Bosch, B. Miller","doi":"10.18653/v1/W19-3503","DOIUrl":null,"url":null,"abstract":"We developed a machine-learning-based method to detect video game players that harass teammates or opponents in chat earlier in the conversation. This real-time technology would allow gaming companies to intervene during games, such as issue warnings or muting or banning a player. In a proof-of-concept experiment on League of Legends data we compute and visualize evaluation metrics for a machine learning classifier as conversations unfold, and observe that the optimal precision and recall of detecting toxic players at each moment in the conversation depends on the confidence threshold of the classifier: the threshold should start low, and increase as the conversation unfolds. How fast this sliding threshold should increase depends on the training set size.","PeriodicalId":230845,"journal":{"name":"Proceedings of the Third Workshop on Abusive Language Online","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Abusive Language Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We developed a machine-learning-based method to detect video game players that harass teammates or opponents in chat earlier in the conversation. This real-time technology would allow gaming companies to intervene during games, such as issue warnings or muting or banning a player. In a proof-of-concept experiment on League of Legends data we compute and visualize evaluation metrics for a machine learning classifier as conversations unfold, and observe that the optimal precision and recall of detecting toxic players at each moment in the conversation depends on the confidence threshold of the classifier: the threshold should start low, and increase as the conversation unfolds. How fast this sliding threshold should increase depends on the training set size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随着对话的发展实时检测骚扰
我们开发了一种基于机器学习的方法来检测在聊天中骚扰队友或对手的视频游戏玩家。这种实时技术将允许游戏公司在游戏过程中进行干预,例如发出警告或让玩家安静或禁止玩家。在《英雄联盟》数据的概念验证实验中,我们计算并可视化了机器学习分类器在对话展开时的评估指标,并观察到在对话的每个时刻检测有毒玩家的最佳精度和召回率取决于分类器的置信度阈值:阈值应该从低开始,并随着对话的展开而增加。这个滑动阈值应该增加多快取决于训练集的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and frontiers in abusive content detection Detecting harassment in real-time as conversations develop Subversive Toxicity Detection using Sentiment Information Exploring Deep Multimodal Fusion of Text and Photo for Hate Speech Classification A Platform Agnostic Dual-Strand Hate Speech Detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1