A streaming implementation of HD H.264/AVC encoder on STORM processor

Wei Wu, N. Wu, Ju Ren, Huayou Su, M. Wen, Chunyuan Zhang
{"title":"A streaming implementation of HD H.264/AVC encoder on STORM processor","authors":"Wei Wu, N. Wu, Ju Ren, Huayou Su, M. Wen, Chunyuan Zhang","doi":"10.1109/MCIT.2010.5444843","DOIUrl":null,"url":null,"abstract":"H.264/AVC significantly outperforms the previous video coding standards at the expense of a higher computational complexity. The complexity is even higher when H.264/AVC is used in applications with high bandwidth and high quality like real-time encoding of HD (High-Definition) video. However, the stream architecture such as STORM processor provides a powerful mechanism to achieve high performance in media processing and signal processing. In this paper, we describe a streaming implementation of HD H.264/AVC encoder on STORM processor. Based on the reference code's features, we proposed a suitable streaming method for every major process in H.264/AVC encoder. The experimental results show that our streaming implementation on STORM-SP16 G220 achieves the performance of 30.6 fps (frames per second) for a HDTV 1080P (1920×1080) sequence, satisfying the real-time requirement.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

H.264/AVC significantly outperforms the previous video coding standards at the expense of a higher computational complexity. The complexity is even higher when H.264/AVC is used in applications with high bandwidth and high quality like real-time encoding of HD (High-Definition) video. However, the stream architecture such as STORM processor provides a powerful mechanism to achieve high performance in media processing and signal processing. In this paper, we describe a streaming implementation of HD H.264/AVC encoder on STORM processor. Based on the reference code's features, we proposed a suitable streaming method for every major process in H.264/AVC encoder. The experimental results show that our streaming implementation on STORM-SP16 G220 achieves the performance of 30.6 fps (frames per second) for a HDTV 1080P (1920×1080) sequence, satisfying the real-time requirement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HD H.264/AVC编码器在STORM处理器上的流实现
H.264/AVC以更高的计算复杂度为代价,显著优于以前的视频编码标准。当H.264/AVC应用于高带宽和高质量的应用,如高清视频的实时编码时,复杂性甚至更高。然而,像STORM处理器这样的流架构提供了一种强大的机制来实现媒体处理和信号处理的高性能。本文描述了一种HD H.264/AVC编码器在STORM处理器上的流媒体实现。根据参考码的特点,针对H.264/AVC编码器的各主要过程提出了适合的流化方法。实验结果表明,我们在STORM-SP16 G220上实现的流式传输在HDTV 1080P (1920×1080)序列上达到了30.6 fps(帧/秒)的性能,满足了实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1