Lessons Learned from UAV-Based Remote Sensing for Precision Agriculture *

S. Bhandari, A. Raheja, M. Chaichi, R. Green, Dat Do, Frank Pham, M. Ansari, Joseph Wolf, Tristan M. Sherman, Antonio Espinas
{"title":"Lessons Learned from UAV-Based Remote Sensing for Precision Agriculture *","authors":"S. Bhandari, A. Raheja, M. Chaichi, R. Green, Dat Do, Frank Pham, M. Ansari, Joseph Wolf, Tristan M. Sherman, Antonio Espinas","doi":"10.1109/ICUAS.2018.8453445","DOIUrl":null,"url":null,"abstract":"This paper presents the lessons learned from the ongoing investigation at Cal Poly Pomona on the effectiveness of UAV-based remote sensing technology in detecting plant stresses due to water and nutrients. UAVs equipped with multispectral/hyperspectral sensors and RGB cameras were flown over lettuce and citrus plants at Cal Poly Pomona’s Spadra farm. The spectral sensor data were used in the determination of various vegetation indices that provide information on the water and nitrogen stresses of the plants. Proximal sensors that were used for the verification of remote sensing data included water potential meter, chlorophyll meter, and handheld spectroradiometer. The paper shows the relationship between the remote sensing and proximal sensor data. The paper also discusses the flight test procedures, data collection methods, and lessons learned so far.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents the lessons learned from the ongoing investigation at Cal Poly Pomona on the effectiveness of UAV-based remote sensing technology in detecting plant stresses due to water and nutrients. UAVs equipped with multispectral/hyperspectral sensors and RGB cameras were flown over lettuce and citrus plants at Cal Poly Pomona’s Spadra farm. The spectral sensor data were used in the determination of various vegetation indices that provide information on the water and nitrogen stresses of the plants. Proximal sensors that were used for the verification of remote sensing data included water potential meter, chlorophyll meter, and handheld spectroradiometer. The paper shows the relationship between the remote sensing and proximal sensor data. The paper also discusses the flight test procedures, data collection methods, and lessons learned so far.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机遥感技术在精准农业中的应用*
本文介绍了加州理工波莫纳分校正在进行的基于无人机的遥感技术在探测植物水分和养分胁迫方面的有效性研究的经验教训。配备多光谱/高光谱传感器和RGB相机的无人机在加州保利波莫纳斯帕德拉农场的莴苣和柑橘植物上空飞行。光谱传感器数据用于测定各种植被指数,这些指数提供了植物水氮胁迫的信息。用于验证遥感数据的近端传感器包括水势计、叶绿素计和手持式光谱辐射计。本文给出了遥感数据与近端遥感数据之间的关系。本文还讨论了飞行试验程序、数据收集方法和迄今为止的经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1