Characterizing Java Streams in the Wild

Eduardo Rosales, Andrea Rosà, Matteo Basso, A. Villazón, Adriana Orellana, Ángel Zenteno, Jhon Rivero, Walter Binder
{"title":"Characterizing Java Streams in the Wild","authors":"Eduardo Rosales, Andrea Rosà, Matteo Basso, A. Villazón, Adriana Orellana, Ángel Zenteno, Jhon Rivero, Walter Binder","doi":"10.1109/ICECCS54210.2022.00025","DOIUrl":null,"url":null,"abstract":"Since Java 8, streams ease the development of data transformations using a declarative style based on functional programming. Some recent studies aim at shedding light on how streams are used. However, they consider only small sets of applications and mainly apply static analysis techniques, leaving the large-scale analysis of dynamic metrics focusing on stream processing an open research question. In this paper, we present the first large-scale empirical study on the use of streams in Java. We present a novel dynamic analysis for collecting runtime information and key metrics that enable the fine-grained characterization of sequential and parallel stream processing. We massively apply our dynamic analysis using a fully automated approach, supported by a distributed infrastructure to mine public software projects hosted on GitHub. Our findings advance the understanding of the use of streams, both confirming some of the results of previous studies at a much larger scale, as well as revealing previously unobserved findings in the use of streams.","PeriodicalId":344493,"journal":{"name":"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Engineering of Complex Computer Systems (ICECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCS54210.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since Java 8, streams ease the development of data transformations using a declarative style based on functional programming. Some recent studies aim at shedding light on how streams are used. However, they consider only small sets of applications and mainly apply static analysis techniques, leaving the large-scale analysis of dynamic metrics focusing on stream processing an open research question. In this paper, we present the first large-scale empirical study on the use of streams in Java. We present a novel dynamic analysis for collecting runtime information and key metrics that enable the fine-grained characterization of sequential and parallel stream processing. We massively apply our dynamic analysis using a fully automated approach, supported by a distributed infrastructure to mine public software projects hosted on GitHub. Our findings advance the understanding of the use of streams, both confirming some of the results of previous studies at a much larger scale, as well as revealing previously unobserved findings in the use of streams.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在野外描述Java流
自Java 8以来,流使用基于函数式编程的声明式风格简化了数据转换的开发。最近的一些研究旨在揭示河流是如何被利用的。然而,他们只考虑了小的应用集,主要应用静态分析技术,使得关注流处理的动态度量的大规模分析成为一个开放的研究问题。在本文中,我们提出了Java中使用流的第一个大规模实证研究。我们提出了一种新的动态分析方法,用于收集运行时信息和关键指标,从而能够对顺序和并行流处理进行细粒度表征。我们使用完全自动化的方法大规模应用动态分析,由分布式基础设施支持,以挖掘托管在GitHub上的公共软件项目。我们的研究结果促进了对河流使用的理解,既证实了以前在更大范围内研究的一些结果,也揭示了以前在河流使用中未被观察到的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameter Sensitive Pointer Analysis for Java Optimizing Parallel Java Streams Parameterized Design and Formal Verification of Multi-ported Memory Extension-Compression Learning: A deep learning code search method that simulates reading habits Proceedings 2022 26th International Conference on Engineering of Complex Computer Systems [Title page iii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1