Effect of Electrode Potential and Structure on the Susceptibility to HESCC in Duplex Stainless Steels Analytical Evaluation of Hydrogen Embrittlement Type SCC and Its Mechanism in Duplex Stainless Steel Welds
{"title":"Effect of Electrode Potential and Structure on the Susceptibility to HESCC in Duplex Stainless Steels Analytical Evaluation of Hydrogen Embrittlement Type SCC and Its Mechanism in Duplex Stainless Steel Welds","authors":"Y. Mukai, M. Murata, Jing-bo Wang","doi":"10.2207/QJJWS.9.245","DOIUrl":null,"url":null,"abstract":"In this paper the authors discussed the depedence of crack initiation properties on potential and the effect of microstructures on the crack initiation and propagation properties in duplex stainless steels. It was clear that at less noble potential crack initiation occured from ferritic phase near the tip of austenitic phase which was controled by HESCC in this region. On the other hand, at noble potential crack initiated from corrosion pets which was formed at the boundary of ferritic and austenitic phases. As the effect of potential on the time to failure with decreasing the potential the time to failure decreased greatly both in a single ferritic phase stainless steel and duplex stainless steels, but even at the potential of -1.5V vs SCE there were no failures to he observed in a single austentic phase stainless steel, which means that austenitic phase is unsusceptible to HESCC. Additionally, as the effecc of ferrite content on HESCC properties of duplex stainless steels, with decreasing ferrite content the threshold stress increased and crack growth rate decreased greatly, which means that austenitic phase has a keying effect on crack propagating through ferritic phase. At the region of ferrite content less than 45%, threshold stress was nearly as same as the tensile strength of the materials and crack could not propagate through austenitic phase because of the continuousness of the austenitic phase which will prevent crack propagating through ferritic phase. Therefore, ferrite content of 45% should be considered as a critical value for crack initiating and propagating in duplex stainless steels.","PeriodicalId":273687,"journal":{"name":"Transactions of the Japan Welding Society","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.9.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper the authors discussed the depedence of crack initiation properties on potential and the effect of microstructures on the crack initiation and propagation properties in duplex stainless steels. It was clear that at less noble potential crack initiation occured from ferritic phase near the tip of austenitic phase which was controled by HESCC in this region. On the other hand, at noble potential crack initiated from corrosion pets which was formed at the boundary of ferritic and austenitic phases. As the effect of potential on the time to failure with decreasing the potential the time to failure decreased greatly both in a single ferritic phase stainless steel and duplex stainless steels, but even at the potential of -1.5V vs SCE there were no failures to he observed in a single austentic phase stainless steel, which means that austenitic phase is unsusceptible to HESCC. Additionally, as the effecc of ferrite content on HESCC properties of duplex stainless steels, with decreasing ferrite content the threshold stress increased and crack growth rate decreased greatly, which means that austenitic phase has a keying effect on crack propagating through ferritic phase. At the region of ferrite content less than 45%, threshold stress was nearly as same as the tensile strength of the materials and crack could not propagate through austenitic phase because of the continuousness of the austenitic phase which will prevent crack propagating through ferritic phase. Therefore, ferrite content of 45% should be considered as a critical value for crack initiating and propagating in duplex stainless steels.
本文讨论了双相不锈钢裂纹起裂性能与电位的关系以及微观组织对裂纹起裂和扩展性能的影响。结果表明,在较低的电位下,裂纹起源于奥氏体尖端附近的铁素体相,该区域受HESCC控制。另一方面,在铁素体与奥氏体相界处形成的腐蚀带引发了高电位裂纹。电势对失效时间的影响随着电势的减小,单铁素体相不锈钢和双相不锈钢的失效时间都大大缩短,但即使在-1.5V vs SCE的电势下,单奥氏体相不锈钢中也没有观察到失效,这意味着奥氏体相对HESCC不敏感。此外,由于铁素体含量对双相不锈钢HESCC性能的影响,随着铁素体含量的降低,阈值应力增加,裂纹扩展速率大大降低,这意味着奥氏体相对裂纹通过铁素体相扩展起关键作用。在铁素体含量小于45%的区域,阈值应力与材料的抗拉强度基本一致,由于奥氏体相的连续性,裂纹无法通过奥氏体相扩展,从而阻止了裂纹通过铁素体相扩展。因此,45%的铁素体含量是双相不锈钢裂纹萌生和扩展的临界值。