Classification of very high resolution SAR image based on convolutional neural network

Jinxin Li, Chao Wang, Shigang Wang, Hong Zhang, Bo Zhang
{"title":"Classification of very high resolution SAR image based on convolutional neural network","authors":"Jinxin Li, Chao Wang, Shigang Wang, Hong Zhang, Bo Zhang","doi":"10.1109/RSIP.2017.7958811","DOIUrl":null,"url":null,"abstract":"The new advanced very high resolution (VHR) synthetic aperture radar (SAR) sensor is a kind of high-tech imaging radar developed rapidly in recent years, and it can get even less than 1 m high resolution SAR image. The feature of the VHR SAR image is different from the low or medium resolution SAR image and it contains more abundant information, so the traditional SAR image classification methods can't be directly applied in VHR SAR image classification. In order to achieve high precision classification performance of the VHR SAR image, convolutional neural network (CNN), a kind of representative deep learning method, is applied in this paper. Compared with the traditional supervised classification methods, such as minimum distance and maximum likelihood, the CNN method obtained better classification result with 97.0% average accuracy. The experiments demonstrate that the CNN is an effective and favorable classification method for VHR SAR image classification.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"23 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The new advanced very high resolution (VHR) synthetic aperture radar (SAR) sensor is a kind of high-tech imaging radar developed rapidly in recent years, and it can get even less than 1 m high resolution SAR image. The feature of the VHR SAR image is different from the low or medium resolution SAR image and it contains more abundant information, so the traditional SAR image classification methods can't be directly applied in VHR SAR image classification. In order to achieve high precision classification performance of the VHR SAR image, convolutional neural network (CNN), a kind of representative deep learning method, is applied in this paper. Compared with the traditional supervised classification methods, such as minimum distance and maximum likelihood, the CNN method obtained better classification result with 97.0% average accuracy. The experiments demonstrate that the CNN is an effective and favorable classification method for VHR SAR image classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的超高分辨率SAR图像分类
新型先进的甚高分辨率(VHR)合成孔径雷达(SAR)传感器是近年来迅速发展起来的一种高科技成像雷达,它可以获得甚至小于1米的高分辨率SAR图像。由于VHR SAR图像的特点不同于低分辨率或中分辨率的SAR图像,其包含的信息更为丰富,传统的SAR图像分类方法不能直接应用于VHR SAR图像的分类。为了实现VHR SAR图像的高精度分类性能,本文采用了一种具有代表性的深度学习方法——卷积神经网络(CNN)。与传统的最小距离、最大似然等监督分类方法相比,CNN方法获得了更好的分类结果,平均准确率为97.0%。实验表明,CNN是一种有效的、良好的VHR SAR图像分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm of remote sensing image matching based on corner-point A weakly supervised road extraction approach via deep convolutional nets based image segmentation Hyperspectral image classification based on spectral-spatial feature extraction An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images The development of deep learning in synthetic aperture radar imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1