Tool wear prediction using evolutionary Dynamic Fuzzy Neural (EDFNN) Network

Mahardhika Pratama, M. Er, Xiang Li, O. Gan, Richad J. Oentaryo, San Linn, L. Zhai, I. Arifin
{"title":"Tool wear prediction using evolutionary Dynamic Fuzzy Neural (EDFNN) Network","authors":"Mahardhika Pratama, M. Er, Xiang Li, O. Gan, Richad J. Oentaryo, San Linn, L. Zhai, I. Arifin","doi":"10.1109/IECON.2011.6119997","DOIUrl":null,"url":null,"abstract":"In development of self-organizing fuzzy neural network, selection of optimal parameters is one of the key issues. This is especially so for a system with more than 10 parameters whereby it will be challenging for expert users to determine the optimal parameters. This paper presents a hybrid Dynamic Fuzzy Neural Network (DFNN), and Genetic Algorithm (GA) termed Evolutionary Dynamic Fuzzy Neural Network (EDFNN) for the prediction of tool wear of ball nose end milling process. GA, well known for its powerful search method, is implemented to obtain optimal parameters of DFNN, so as to circumvent the complex time varying property without prior knowledge or exhaustive trials. Degradation of machine tools in ball nose end milling process is highly non-linear and time varying. Benchmarked again original DFNN in the experimental study, EDFNN demonstrates the effectiveness and versatility of proposed algorithm which not only produces higher prediction accuracy, and faster training time, but also serves to more compact and parsimonious network structure.","PeriodicalId":105539,"journal":{"name":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2011.6119997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In development of self-organizing fuzzy neural network, selection of optimal parameters is one of the key issues. This is especially so for a system with more than 10 parameters whereby it will be challenging for expert users to determine the optimal parameters. This paper presents a hybrid Dynamic Fuzzy Neural Network (DFNN), and Genetic Algorithm (GA) termed Evolutionary Dynamic Fuzzy Neural Network (EDFNN) for the prediction of tool wear of ball nose end milling process. GA, well known for its powerful search method, is implemented to obtain optimal parameters of DFNN, so as to circumvent the complex time varying property without prior knowledge or exhaustive trials. Degradation of machine tools in ball nose end milling process is highly non-linear and time varying. Benchmarked again original DFNN in the experimental study, EDFNN demonstrates the effectiveness and versatility of proposed algorithm which not only produces higher prediction accuracy, and faster training time, but also serves to more compact and parsimonious network structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化动态模糊神经网络(EDFNN)的刀具磨损预测
在自组织模糊神经网络的开发中,最优参数的选择是关键问题之一。对于具有10个以上参数的系统尤其如此,对于专家用户来说,确定最佳参数将是一项挑战。本文提出了一种混合动态模糊神经网络(DFNN)和遗传算法(GA)的进化动态模糊神经网络(EDFNN),用于球头端铣过程刀具磨损预测。以其强大的搜索方法——遗传算法(GA)获得DFNN的最优参数,避免了DFNN复杂的时变特性,无需先验知识或穷举试验。球头端铣过程中机床的退化是高度非线性和时变的。EDFNN在实验研究中再次以原始DFNN为基准,证明了该算法的有效性和通用性,不仅预测精度更高,训练时间更快,而且网络结构更紧凑、更精简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vibration suppression of resonant system by using wave compensator Planning and implementation of motion trajectory based on C2 PH spline Optimal dynamic quantizer based acceleration control with narrow bandwidth Grid-based localization and mapping method without odometry information Novel stability analysis of variable step size incremental resistance INR MPPT for PV systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1