Collaboration and abstract representations: towards predictive models based on raw speech and eye-tracking data

Marc-Antoine Nüssli, Patrick Jermann, Mirweis Sangin, P. Dillenbourg
{"title":"Collaboration and abstract representations: towards predictive models based on raw speech and eye-tracking data","authors":"Marc-Antoine Nüssli, Patrick Jermann, Mirweis Sangin, P. Dillenbourg","doi":"10.3115/1600053.1600065","DOIUrl":null,"url":null,"abstract":"This study aims to explore the possibility of using machine learning techniques to build predictive models of performance in collaborative induction tasks. More specifically, we explored how signal-level data, like eye-gaze data and raw speech may be used to build such models. The results show that such low level features have effectively some potential to predict performance in such tasks. Implications for future applications design are shortly discussed.","PeriodicalId":120843,"journal":{"name":"International Conference on Computer Supported Collaborative Learning","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Supported Collaborative Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1600053.1600065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This study aims to explore the possibility of using machine learning techniques to build predictive models of performance in collaborative induction tasks. More specifically, we explored how signal-level data, like eye-gaze data and raw speech may be used to build such models. The results show that such low level features have effectively some potential to predict performance in such tasks. Implications for future applications design are shortly discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作和抽象表示:基于原始语音和眼动追踪数据的预测模型
本研究旨在探索使用机器学习技术构建协作归纳任务性能预测模型的可能性。更具体地说,我们探索了如何使用信号级数据,如眼睛注视数据和原始语音来构建这样的模型。结果表明,这种低级特征在预测此类任务的性能方面具有一定的潜力。稍后将讨论对未来应用程序设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Teachers' Collaboration for Designing Technology-Enhanced Learning Predicting Success in Massive Open Online Courses (MOOCs) Using Cohesion Network Analysis Identification of Patterns of Tool Use and Sketching Practices in a Learning By Design Task Phases of Design: Following Idea Development and Patterns of Collaborative Discussion in a Learning By Design Project Discovering Dependencies: A Case Study of Collaborative Dynamic Mathematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1