{"title":"Modeling and simulation of energy control strategies in AC Microgrid","authors":"H. Wen, Runze Yang","doi":"10.1109/APPEEC.2016.7779734","DOIUrl":null,"url":null,"abstract":"Microgrid is an intelligent power system which contains distributed generations, energy storages, local loads, monitoring and protecting units to realize autonomous control, protect and manage functions. It's regarded as the trend for the future power system since it satisfies the rapidly-developing electrical power demand and reduces environmental concerns. Considering different operation modes of Microgrid such as grid-connected and stand-alone, the control strategies need be automatically adjusted with support from Grid, battery or Fuel Cells. In this paper, a Microgrid is built and simulated in PSCAD, including PV, wind power, Fuel Cell, lead acid battery, and micro-turbine. Both component and system level models are verified for different scenarios with appropriate control strategies. Main results are illustrated in order to show the effectiveness of the control strategy for different modes.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Microgrid is an intelligent power system which contains distributed generations, energy storages, local loads, monitoring and protecting units to realize autonomous control, protect and manage functions. It's regarded as the trend for the future power system since it satisfies the rapidly-developing electrical power demand and reduces environmental concerns. Considering different operation modes of Microgrid such as grid-connected and stand-alone, the control strategies need be automatically adjusted with support from Grid, battery or Fuel Cells. In this paper, a Microgrid is built and simulated in PSCAD, including PV, wind power, Fuel Cell, lead acid battery, and micro-turbine. Both component and system level models are verified for different scenarios with appropriate control strategies. Main results are illustrated in order to show the effectiveness of the control strategy for different modes.