Analysis of Elementary Math Word Problems Based on AI Deep Learning

Mingzhe Li
{"title":"Analysis of Elementary Math Word Problems Based on AI Deep Learning","authors":"Mingzhe Li","doi":"10.25236/ajms.2023.040310","DOIUrl":null,"url":null,"abstract":": Natural language processing (NLP) has greatly advanced in machine learning, but math education software lacks AI integration for solving math word problems in English. We propose using the BertGen pre-trained Transformer model, along with the MAWPS dataset augmented by our dataset augmenter. The Transformer model, with its multi-head attention mechanisms, excels at capturing long-range dependencies and referential relationships, crucial for math word problems at the primary school level. Our accuracy tests and performance on different datasets validate the effectiveness and generalizability of our approach. Moreover, our augmented dataset outperforms smaller unaugmented datasets, while maintaining diversity. The math word problem augmenter can be adapted for other math problem sets, supporting future research in the field.","PeriodicalId":372277,"journal":{"name":"Academic Journal of Mathematical Sciences","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajms.2023.040310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

: Natural language processing (NLP) has greatly advanced in machine learning, but math education software lacks AI integration for solving math word problems in English. We propose using the BertGen pre-trained Transformer model, along with the MAWPS dataset augmented by our dataset augmenter. The Transformer model, with its multi-head attention mechanisms, excels at capturing long-range dependencies and referential relationships, crucial for math word problems at the primary school level. Our accuracy tests and performance on different datasets validate the effectiveness and generalizability of our approach. Moreover, our augmented dataset outperforms smaller unaugmented datasets, while maintaining diversity. The math word problem augmenter can be adapted for other math problem sets, supporting future research in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于AI深度学习的初等数学应用题分析
:自然语言处理(NLP)在机器学习方面取得了很大进展,但数学教育软件缺乏AI集成来解决英语数学单词问题。我们建议使用BertGen预训练的Transformer模型,以及由我们的数据集增强器增强的MAWPS数据集。Transformer模型具有多头注意机制,擅长捕捉远程依赖关系和参考关系,这对于小学水平的数学单词问题至关重要。我们在不同数据集上的准确性测试和性能验证了我们方法的有效性和可泛化性。此外,我们的增强数据集优于较小的未增强数据集,同时保持了多样性。数学单词问题增强器可以用于其他数学问题集,支持该领域的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Existence of positive solutions for boundary value problems of nonlinear fractional functional integro-differential equations Spatial and Temporal Evolution of Population-Weighted PM2.5 Concentration and Its Influencing Factors in China from 2000 to 2021 Mathematical Model for Ordering and Transporting Raw Materials for Production Companies Research on the trend of Chinese stock market based on Monte Carlo simulation method Research on the productivity performance of NBA players and its influence factor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1