Yin Zhao, Zhenzhong Chen, Dong Tian, Ce Zhu, Lu Yu
{"title":"Suppressing texture-depth misalignment for boundary noise removal in view synthesis","authors":"Yin Zhao, Zhenzhong Chen, Dong Tian, Ce Zhu, Lu Yu","doi":"10.1109/PCS.2010.5702494","DOIUrl":null,"url":null,"abstract":"During view synthesis based on depth maps, also known as Depth-Image-Based Rendering (DIBR), annoying artifacts are often generated around foreground objects, yielding the visual effects that slim silhouettes of foreground objects are scattered into the background. The artifacts are referred as the boundary noises. We investigate the cause of boundary noises, and find out that they result from the misalignment between texture and depth information along object boundaries. Accordingly, we propose a novel solution to remove such boundary noises by applying restrictions during forward warping on the pixels within the texture-depth misalignment regions. Experiments show this algorithm can effectively eliminate most boundary noises and it is also robust for view synthesis with compressed depth and texture information.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
During view synthesis based on depth maps, also known as Depth-Image-Based Rendering (DIBR), annoying artifacts are often generated around foreground objects, yielding the visual effects that slim silhouettes of foreground objects are scattered into the background. The artifacts are referred as the boundary noises. We investigate the cause of boundary noises, and find out that they result from the misalignment between texture and depth information along object boundaries. Accordingly, we propose a novel solution to remove such boundary noises by applying restrictions during forward warping on the pixels within the texture-depth misalignment regions. Experiments show this algorithm can effectively eliminate most boundary noises and it is also robust for view synthesis with compressed depth and texture information.