An Approach to Semantic Information Retrieval

Huiying Li
{"title":"An Approach to Semantic Information Retrieval","authors":"Huiying Li","doi":"10.1109/CSC.2012.32","DOIUrl":null,"url":null,"abstract":"The growth of the Semantic Web has seen a rapid increase in the amount of Resource Description Framework (RDF) data. Meanwhile, the demand for access to RDF data without detailed knowledge of RDF query languages is increasing. In this study, an approach enabling keyword-based semantic information query over RDF data is proposed. The approach sets up a keyword-inverted index and a relation index based on the r-radius+ graph and searches the connecting nodes to provide an answer for keyword query. Moreover, the approach uses an improved scoring function based on textual relevancy and relation popularity and supports top-k queries. Experimental results show that the proposed approach can achieve good query performance.","PeriodicalId":183800,"journal":{"name":"2012 International Conference on Cloud and Service Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cloud and Service Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSC.2012.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The growth of the Semantic Web has seen a rapid increase in the amount of Resource Description Framework (RDF) data. Meanwhile, the demand for access to RDF data without detailed knowledge of RDF query languages is increasing. In this study, an approach enabling keyword-based semantic information query over RDF data is proposed. The approach sets up a keyword-inverted index and a relation index based on the r-radius+ graph and searches the connecting nodes to provide an answer for keyword query. Moreover, the approach uses an improved scoring function based on textual relevancy and relation popularity and supports top-k queries. Experimental results show that the proposed approach can achieve good query performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种语义信息检索方法
随着语义网的发展,资源描述框架(RDF)数据的数量迅速增加。与此同时,在不详细了解RDF查询语言的情况下访问RDF数据的需求正在增加。本文提出了一种基于关键字的RDF数据语义信息查询方法。该方法通过建立关键字倒排索引和基于r-半径+图的关系索引,对连接节点进行搜索,为关键字查询提供答案。此外,该方法使用改进的基于文本相关性和关系流行度的评分函数,并支持top-k查询。实验结果表明,该方法能够取得较好的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Task Scheduling Algorithm in Hybrid Cloud Environment A Resource-Oriented Middleware Framework for Heterogeneous Internet of Things Cloud Storage-oriented Secure Information Gateway A Fast Privacy-Preserving Multi-keyword Search Scheme on Cloud Data Combined Cache Policy for Service Workflow Execution Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1