Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies

Z. Chew, Tingwen Ruan, M. Zhu
{"title":"Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies","authors":"Z. Chew, Tingwen Ruan, M. Zhu","doi":"10.1109/INDIN41052.2019.8972131","DOIUrl":null,"url":null,"abstract":"This paper presents strategies for batteryless energy harvesting powered wireless sensor nodes based on IEEE 802.15.4e standard to join the network successfully with minimal attempts, which minimizes energy wastage. This includes using a well-sized capacitor and different duty cycles for the network joining. Experimental results showed a wireless sensor node that uses a 100 mF energy storage capacitor can usually join the network in one attempt but multiple attempts may be needed if it uses smaller capacitances especially when the harvested power is low. With a duty-cycled network joining, the time required to form a network is shorter, which reduces the overall energy usage of the nodes in joining the network. An energy harvesting powered wireless sensor network (WSN) was successfully formed in one attempt by using the proposed methods.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents strategies for batteryless energy harvesting powered wireless sensor nodes based on IEEE 802.15.4e standard to join the network successfully with minimal attempts, which minimizes energy wastage. This includes using a well-sized capacitor and different duty cycles for the network joining. Experimental results showed a wireless sensor node that uses a 100 mF energy storage capacitor can usually join the network in one attempt but multiple attempts may be needed if it uses smaller capacitances especially when the harvested power is low. With a duty-cycled network joining, the time required to form a network is shorter, which reduces the overall energy usage of the nodes in joining the network. An energy harvesting powered wireless sensor network (WSN) was successfully formed in one attempt by using the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于节能网络连接策略的能量收集供电无线传感器节点
本文提出了基于IEEE 802.15.4e标准的无电池能量收集供电无线传感器节点的策略,以最少的尝试成功加入网络,从而最大限度地减少了能量浪费。这包括为网络连接使用合适尺寸的电容器和不同的占空比。实验结果表明,使用100mf储能电容的无线传感器节点通常可以一次尝试加入网络,但如果使用较小的电容,特别是在收获功率较低的情况下,可能需要多次尝试。当网络加入占空比时,形成网络所需的时间更短,从而降低了节点加入网络时的整体能耗。利用所提出的方法,一次成功地构建了能量收集供电的无线传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1