Comprehensive investigation on mechanical strain induced performance boosts in LDMOS

Wangran Wu, Siyang Liu, Jing Zhu, Weifeng Sun
{"title":"Comprehensive investigation on mechanical strain induced performance boosts in LDMOS","authors":"Wangran Wu, Siyang Liu, Jing Zhu, Weifeng Sun","doi":"10.1109/ISPSD.2018.8393602","DOIUrl":null,"url":null,"abstract":"In this paper, we have comprehensively investigated the performance of LDMOS under mechanical strain. The electrical properties of nLDMOS under uniaxial tensile (UT) strain along channel direction are examined thoroughly. We find that the nLDMOS with longer gate length (Lg) is more preferred for strain. Both lateral electric field (Vd) and vertical electric field (Vg) play an important role on the strain effects. The piezoresistance coefficients of nLDMOS are evaluated for the first time. Neglectable breakdown voltage (Vbd) degradation is observed with the 4.4% drain current (Id) increase under UT strain. Finally, the biaxial tensile strain and uniaxial compressive strain parallel to channel are proved to be most efficient for nLDMOS and pLDMOS with 8.8% and 14.5% Ron reduction, respectively.","PeriodicalId":166809,"journal":{"name":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2018.8393602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we have comprehensively investigated the performance of LDMOS under mechanical strain. The electrical properties of nLDMOS under uniaxial tensile (UT) strain along channel direction are examined thoroughly. We find that the nLDMOS with longer gate length (Lg) is more preferred for strain. Both lateral electric field (Vd) and vertical electric field (Vg) play an important role on the strain effects. The piezoresistance coefficients of nLDMOS are evaluated for the first time. Neglectable breakdown voltage (Vbd) degradation is observed with the 4.4% drain current (Id) increase under UT strain. Finally, the biaxial tensile strain and uniaxial compressive strain parallel to channel are proved to be most efficient for nLDMOS and pLDMOS with 8.8% and 14.5% Ron reduction, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机械应变致LDMOS性能提升的综合研究
本文全面研究了LDMOS在机械应变下的性能。研究了nLDMOS在沟道方向单轴拉伸(UT)应变下的电学性能。我们发现栅极长度(Lg)较长的nLDMOS更适合应变。侧向电场(Vd)和垂直电场(Vg)对应变效应都有重要影响。首次计算了nLDMOS的压阻系数。在UT应变下,漏极电流(Id)增加4.4%,击穿电压(Vbd)下降可以忽略不计。最后,平行于通道的双轴拉伸应变和单轴压缩应变对nLDMOS和pLDMOS最有效,分别降低了8.8%和14.5%的Ron。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMOS bi-directional ultra-wideband galvanically isolated die-to-die communication utilizing a double-isolated transformer Local lifetime control for enhanced ruggedness of HVDC thyristors P-gate GaN HEMT gate-driver design for joint optimization of switching performance, freewheeling conduction and short-circuit robustness Influence of the off-state gate-source voltage on the transient drain current response of SiC MOSFETs Reduction of RonA retaining high threshold voltage in SiC DioMOS by improved channel design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1