Thermocouple sensor fault detection using Auto-Associative Kernel Regression and Generalized Likelihood Ratio Test

N. Sairam, S. Mandal
{"title":"Thermocouple sensor fault detection using Auto-Associative Kernel Regression and Generalized Likelihood Ratio Test","authors":"N. Sairam, S. Mandal","doi":"10.1109/ICCECE.2016.8009575","DOIUrl":null,"url":null,"abstract":"In nuclear power plants, sensor health condition monitoring is necessary to ensure the correctness of measurements. Out-of-calibration sensor data can direct to take inappropriate action of system monitoring and controlling application. Continuous sensor status monitoring is desirable to assure smooth running of the plant and reduce maintenance costs associated with unnecessary manual sensor calibrations. In this paper, an online sensor fault detection technique is proposed using Auto-Associative Kernel Regression (AAKR) and Generalized Likelihood Ratio Test. The AAKR method is used to approximate the data and the GLRT is applied as a metric to detect the faulty sensor on the residual space, the deviation of approximated data from the original. This paper claims that the AAKR-GLRT based fault detection method is better than the PCA-Q-statistic. The method is validated by the real data from the Fast Breeder Test Reactor (FBTR).","PeriodicalId":414303,"journal":{"name":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE.2016.8009575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In nuclear power plants, sensor health condition monitoring is necessary to ensure the correctness of measurements. Out-of-calibration sensor data can direct to take inappropriate action of system monitoring and controlling application. Continuous sensor status monitoring is desirable to assure smooth running of the plant and reduce maintenance costs associated with unnecessary manual sensor calibrations. In this paper, an online sensor fault detection technique is proposed using Auto-Associative Kernel Regression (AAKR) and Generalized Likelihood Ratio Test. The AAKR method is used to approximate the data and the GLRT is applied as a metric to detect the faulty sensor on the residual space, the deviation of approximated data from the original. This paper claims that the AAKR-GLRT based fault detection method is better than the PCA-Q-statistic. The method is validated by the real data from the Fast Breeder Test Reactor (FBTR).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自关联核回归和广义似然比检验的热电偶传感器故障检测
在核电站中,传感器健康状态监测是保证测量结果正确性的必要手段。传感器数据的偏差会导致系统监控应用采取不适当的措施。为了确保工厂的平稳运行,减少不必要的手动传感器校准带来的维护成本,需要对传感器状态进行连续监测。提出了一种基于自关联核回归(AAKR)和广义似然比检验的传感器故障在线检测技术。使用AAKR方法对数据进行近似,并使用GLRT作为度量来检测残差空间上的故障传感器,即近似数据与原始数据的偏差。本文认为,基于AAKR-GLRT的故障检测方法优于pca - q统计量。该方法通过快中子增殖试验堆(FBTR)的实测数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simulation based performance analysis of proactive, reactive and hybrid routing protocol Enhancement of optical absorption in Plasmonic thin film solar cell Task management of robot using cloud computing Study of the effect of air gap in segmented cylindrical dielectric resonator loaded monopole Model order reduction of high order LTI system using particle swarm optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1