Load Carriage Device for Studying Medial-Lateral Stability of Walking: Design and Performance Evaluation

Jean-Paul Martin, Qingguo Li
{"title":"Load Carriage Device for Studying Medial-Lateral Stability of Walking: Design and Performance Evaluation","authors":"Jean-Paul Martin, Qingguo Li","doi":"10.1109/ICORR.2019.8779385","DOIUrl":null,"url":null,"abstract":"When walking, the trunk not only oscillates in the vertical direction, but also in the medial-lateral direction. We developed a novel backpack that uses the medial-lateral oscillations of the trunk as input motion to drive medial-lateral oscillations of weight carried in a modified backpack. We use a combination of spring and damping elements to control mass motion, resulting in the ability to prescribe a variety of mass oscillation amplitudes and phase angles. We propose the device as a platform that can be used to study medial-lateral stability during walking. In particular, if the body’s ability to predict medial-lateral centre-of-mass state is affected by an oscillating external mass. In this paper, we present the design, model, and model evaluation of our novel load carriage device. During testing, our model was able to predict the oscillation dynamics of the carried mass while walking: demonstrating its capability to create a variety of load carriage scenarios for the user.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When walking, the trunk not only oscillates in the vertical direction, but also in the medial-lateral direction. We developed a novel backpack that uses the medial-lateral oscillations of the trunk as input motion to drive medial-lateral oscillations of weight carried in a modified backpack. We use a combination of spring and damping elements to control mass motion, resulting in the ability to prescribe a variety of mass oscillation amplitudes and phase angles. We propose the device as a platform that can be used to study medial-lateral stability during walking. In particular, if the body’s ability to predict medial-lateral centre-of-mass state is affected by an oscillating external mass. In this paper, we present the design, model, and model evaluation of our novel load carriage device. During testing, our model was able to predict the oscillation dynamics of the carried mass while walking: demonstrating its capability to create a variety of load carriage scenarios for the user.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究行走中侧向稳定性的载重装置:设计与性能评价
行走时,躯干不仅在垂直方向上振荡,而且在中外侧方向上振荡。我们开发了一种新颖的背包,它使用躯干的内侧-外侧振荡作为输入运动来驱动改进背包中携带的重量的内侧-外侧振荡。我们使用弹簧和阻尼元件的组合来控制质量运动,从而能够规定各种质量振荡幅度和相位角。我们提出该装置作为一个平台,可用于研究行走时的中外侧稳定性。特别是,如果身体预测中外侧质心状态的能力受到振荡的外部质量的影响。在本文中,我们介绍了我们的新型载重运输装置的设计,模型和模型评估。在测试过程中,我们的模型能够预测行走时携带质量的振荡动力学:展示了它为用户创建各种负载承载场景的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton Pattern recognition and direct control home use of a multi-articulating hand prosthesis Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification Texture Discrimination using a Soft Biomimetic Finger for Prosthetic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1