Simultaneous Localization and Mapping with Stereo Vision

Matthew N. Dailey, M. Parnichkun
{"title":"Simultaneous Localization and Mapping with Stereo Vision","authors":"Matthew N. Dailey, M. Parnichkun","doi":"10.1109/ICARCV.2006.345269","DOIUrl":null,"url":null,"abstract":"In the simultaneous localization and mapping (SLAM) problem, a mobile robot must build a map of its environment while simultaneously determining its location within that map. We propose a new algorithm, for visual SLAM (VSLAM), in which the robot's only sensory information is video imagery. Our approach combines stereo vision with a popular sequential Monte Carlo (SMC) algorithm, the Rao-Blackwellised particle filter, to simultaneously explore multiple hypotheses about the robot's six degree-of-freedom trajectory through space and maintain a distinct stochastic map for each of those candidate trajectories. We demonstrate the algorithm's effectiveness in mapping a large outdoor virtual reality environment in the presence of odometry error","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

In the simultaneous localization and mapping (SLAM) problem, a mobile robot must build a map of its environment while simultaneously determining its location within that map. We propose a new algorithm, for visual SLAM (VSLAM), in which the robot's only sensory information is video imagery. Our approach combines stereo vision with a popular sequential Monte Carlo (SMC) algorithm, the Rao-Blackwellised particle filter, to simultaneously explore multiple hypotheses about the robot's six degree-of-freedom trajectory through space and maintain a distinct stochastic map for each of those candidate trajectories. We demonstrate the algorithm's effectiveness in mapping a large outdoor virtual reality environment in the presence of odometry error
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
立体视觉的同步定位和映射
在同时定位和映射(SLAM)问题中,移动机器人必须建立其环境的地图,同时确定其在该地图中的位置。我们提出了一种新的视觉SLAM (VSLAM)算法,其中机器人的唯一感官信息是视频图像。我们的方法将立体视觉与流行的顺序蒙特卡罗(SMC)算法(rao - blackwell化粒子滤波)相结合,同时探索机器人在空间中的六个自由度轨迹的多个假设,并为每个候选轨迹保持一个独特的随机映射。我们证明了该算法在存在里程误差的大型户外虚拟现实环境中映射的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1