Efficient calibration of thermal models based on application behavior

Youngwoo Ahn, Inchoon Yeo, R. Bettati
{"title":"Efficient calibration of thermal models based on application behavior","authors":"Youngwoo Ahn, Inchoon Yeo, R. Bettati","doi":"10.1109/ICCD.2009.5413179","DOIUrl":null,"url":null,"abstract":"With increasing power densities, raising operating temperatures in chips threaten system reliability. Thermal control therefore has emerged as an important issue in system design and management. For dynamic thermal control to be effective, predictive thermal models of the system are needed. Such models typically use power as input, which renders them difficult to use in practical systems, where power monitoring is not available at processor or chip level. In this paper, we describe a methodology to infer the thermal model based on the monitoring of existing temperature sensors and of instruction counter registers. This allows the thermal model to be easily established, calibrated, and recalibrated at runtime to account for different thermal behavior due to either variations in fabrication or to varying environmental parameters. We validate the proposed methodology through a series of experiments. We also propose and validate an extension of the model and associated methodology for multicore processors.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With increasing power densities, raising operating temperatures in chips threaten system reliability. Thermal control therefore has emerged as an important issue in system design and management. For dynamic thermal control to be effective, predictive thermal models of the system are needed. Such models typically use power as input, which renders them difficult to use in practical systems, where power monitoring is not available at processor or chip level. In this paper, we describe a methodology to infer the thermal model based on the monitoring of existing temperature sensors and of instruction counter registers. This allows the thermal model to be easily established, calibrated, and recalibrated at runtime to account for different thermal behavior due to either variations in fabrication or to varying environmental parameters. We validate the proposed methodology through a series of experiments. We also propose and validate an extension of the model and associated methodology for multicore processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于应用行为的热模型的有效校准
随着功率密度的增加,芯片工作温度的升高会威胁到系统的可靠性。因此,热控制已成为系统设计和管理中的一个重要问题。为了使动态热控制有效,需要建立系统的预测热模型。此类模型通常使用电源作为输入,这使得它们难以在实际系统中使用,因为在处理器或芯片级别无法进行电源监控。在本文中,我们描述了一种基于现有温度传感器和指令计数器寄存器的监测来推断热模型的方法。这使得热模型可以很容易地建立、校准,并在运行时重新校准,以解释由于制造变化或环境参数变化而导致的不同热行为。我们通过一系列实验验证了所提出的方法。我们还提出并验证了多核处理器的模型和相关方法的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1