K. Petrosyants, Sergey V. Lebedev, L. Sambursky, V. G. Stakhin, I. Kharitonov
{"title":"Temperature characterization of small-scale SOI MOSFETs in the extended range (to 300°C)","authors":"K. Petrosyants, Sergey V. Lebedev, L. Sambursky, V. G. Stakhin, I. Kharitonov","doi":"10.1109/THERMINIC.2016.7749060","DOIUrl":null,"url":null,"abstract":"In this work, results of electrical measurements and their analysis are demonstrated for a small-scale 180-nm SOI CMOS technology in the extended temperature range (up to 300°C). Comparison with high temperature electrical characteristics of 0.5 μm technology is drawn. Modified model for SOI MOSFETs, based on BSIMSOI model is developed and model parameters are extracted for SPICE simulation of IC blocks. Results of subsequent SPICE simulation of analog and digital circuit blocks characteristics are presented. The potential feasibility of using small-scale SOI CMOS technology (180-nm) for extended temperature range integrated circuits (ICs) is demonstrated.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this work, results of electrical measurements and their analysis are demonstrated for a small-scale 180-nm SOI CMOS technology in the extended temperature range (up to 300°C). Comparison with high temperature electrical characteristics of 0.5 μm technology is drawn. Modified model for SOI MOSFETs, based on BSIMSOI model is developed and model parameters are extracted for SPICE simulation of IC blocks. Results of subsequent SPICE simulation of analog and digital circuit blocks characteristics are presented. The potential feasibility of using small-scale SOI CMOS technology (180-nm) for extended temperature range integrated circuits (ICs) is demonstrated.