A VLSI convolutional neural network architecture for vanishing point computation

M. Villemur, M. Di Federico, P. Julián
{"title":"A VLSI convolutional neural network architecture for vanishing point computation","authors":"M. Villemur, M. Di Federico, P. Julián","doi":"10.1109/EAMTA.2015.7237379","DOIUrl":null,"url":null,"abstract":"This paper presents a VLSI Convolutional Neural Network with special features to implement the Vanishing Point algorithm. The architecture is based on a multi-scale array, with one column processor that implements a neural network with local connectivity, a row processor of SIMD elements that can implement generic convolution and a voting mechanism, which is used by the Vanishing Point algorithm. In addition, a 32-bit 7 pipeline-stage has been designed to sequence all the operations. Simulations of the architecture described in a Hardware description language are shown.","PeriodicalId":101792,"journal":{"name":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAMTA.2015.7237379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a VLSI Convolutional Neural Network with special features to implement the Vanishing Point algorithm. The architecture is based on a multi-scale array, with one column processor that implements a neural network with local connectivity, a row processor of SIMD elements that can implement generic convolution and a voting mechanism, which is used by the Vanishing Point algorithm. In addition, a 32-bit 7 pipeline-stage has been designed to sequence all the operations. Simulations of the architecture described in a Hardware description language are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于消失点计算的VLSI卷积神经网络结构
本文提出了一种具有特殊功能的超大规模集成电路卷积神经网络来实现消失点算法。该架构基于多尺度阵列,其中一列处理器实现具有局部连通性的神经网络,一行SIMD元素处理器实现泛型卷积,并采用消失点算法使用的投票机制。此外,还设计了一个32位的流水线级来对所有操作进行排序。给出了用硬件描述语言描述的体系结构的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of the 12 nA low frequency oscillator Commercial CMOS pixel array for beta and gamma radiation particle counting A selectable bandwidth LNA based on current conveyors Design of CMOS APS and floating gate dosimeters Application of genetic algorithms in the design of robust active filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1