Performance Comparison of Open Speech-To-Text Engines using Sentence Transformer Similarity Check with the Korean Language by Foreigners

A. B. Wahyutama, Mintae Hwang
{"title":"Performance Comparison of Open Speech-To-Text Engines using Sentence Transformer Similarity Check with the Korean Language by Foreigners","authors":"A. B. Wahyutama, Mintae Hwang","doi":"10.1109/IAICT55358.2022.9887500","DOIUrl":null,"url":null,"abstract":"This paper contains the performance comparison of four Speech-to-Text (STT) engines which are Google STT, Naver Clova CSR, IBM Watson, and Microsoft Azure STT when transcribing foreigners speaking the Korean Language. The respondents are recording themselves speaking a predetermined sentence to be compiled together and then feeding it into the STT engine one by one to generate the transcribed text. The performance is evaluated using the Sentence Transformer Python framework that checks the similarity percentage between the original sentence to each of the transcribed texts and then finds the average result. The engine’s performance is categorized into four different categories which are sentence, nationality, age, and gender. The performance comparison results can be used to help determine the optimal STT engine for the Korean Language Spoken by Foreigner to develop STT-based or AI-based applications.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper contains the performance comparison of four Speech-to-Text (STT) engines which are Google STT, Naver Clova CSR, IBM Watson, and Microsoft Azure STT when transcribing foreigners speaking the Korean Language. The respondents are recording themselves speaking a predetermined sentence to be compiled together and then feeding it into the STT engine one by one to generate the transcribed text. The performance is evaluated using the Sentence Transformer Python framework that checks the similarity percentage between the original sentence to each of the transcribed texts and then finds the average result. The engine’s performance is categorized into four different categories which are sentence, nationality, age, and gender. The performance comparison results can be used to help determine the optimal STT engine for the Korean Language Spoken by Foreigner to develop STT-based or AI-based applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用句子转换器与外国人韩语相似度检查的开放语音转文本引擎的性能比较
本文对Google STT、Naver Clova CSR、IBM Watson、Microsoft Azure STT等4种语音转文本(STT)引擎在翻译外国人的韩国语时的性能进行了比较。应答者正在录制自己说的预定句子,然后将其汇编在一起,然后将其逐个输入STT引擎以生成转录文本。使用Sentence Transformer Python框架评估性能,该框架检查原始句子与每个转录文本之间的相似度百分比,然后找到平均结果。该引擎的性能分为四个不同的类别:句子、国籍、年龄和性别。性能比较结果可用于确定外国人说韩语的最佳STT引擎,以开发基于STT或基于ai的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1