{"title":"Optimal Gimbal System Control Strategy for Error Prediction Compensation","authors":"Yongqing Yang, Wei Hao, Tianye Yu, Mei-lin Xie, Yanbing Liang, Peng Liu","doi":"10.1109/ICCSSE.2019.00022","DOIUrl":null,"url":null,"abstract":"In order to suppress the periodic error in the control of the gimbal, an error prediction compensation model is established based on the error compensation theory in predictive control. The error feature extraction and matching of the servo gimbal system is completed based on the error time domain and frequency domain analysis results. Based on the analysis of the error energy spectral density characteristics, according to the energy distribution of different frequency bands, combined with the design of the gimbal control system, the influencing factors such as position sensor error, motor drive error and system structure error are obtained. At the same time, determine the impact domain of each factor. Based on this, through the optimal parameter estimation, the design of the error prediction compensation controller is completed, and finally a new optimal control strategy for error prediction compensation gimbal is obtained. Test verification in a high-precision gimbal shows that the control strategy can significantly improve the speed stability of the gimbal system by about 78%.","PeriodicalId":443482,"journal":{"name":"2019 5th International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSSE.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to suppress the periodic error in the control of the gimbal, an error prediction compensation model is established based on the error compensation theory in predictive control. The error feature extraction and matching of the servo gimbal system is completed based on the error time domain and frequency domain analysis results. Based on the analysis of the error energy spectral density characteristics, according to the energy distribution of different frequency bands, combined with the design of the gimbal control system, the influencing factors such as position sensor error, motor drive error and system structure error are obtained. At the same time, determine the impact domain of each factor. Based on this, through the optimal parameter estimation, the design of the error prediction compensation controller is completed, and finally a new optimal control strategy for error prediction compensation gimbal is obtained. Test verification in a high-precision gimbal shows that the control strategy can significantly improve the speed stability of the gimbal system by about 78%.