Semantic Hierarchy Preserving Deep Hashing for Large-Scale Image Retrieval

Xuefei Zhe, Ou-Yang Le, Shifeng Chen, Hong Yan
{"title":"Semantic Hierarchy Preserving Deep Hashing for Large-Scale Image Retrieval","authors":"Xuefei Zhe, Ou-Yang Le, Shifeng Chen, Hong Yan","doi":"10.23919/MVA51890.2021.9511401","DOIUrl":null,"url":null,"abstract":"Deep hashing models have been proposed as an efficient method for large-scale similarity search. How-ever, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results. The codes are available at https://github.com/mzhang367/hpdh.git.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep hashing models have been proposed as an efficient method for large-scale similarity search. How-ever, most existing deep hashing methods only utilize fine-level labels for training while ignoring the natural semantic hierarchy structure. This paper presents an effective method that preserves the classwise similarity of full-level semantic hierarchy for large-scale image retrieval. Experiments on two benchmark datasets show that our method helps improve the fine-level retrieval performance. Moreover, with the help of the semantic hierarchy, it can produce significantly better binary codes for hierarchical retrieval, which indicates its potential of providing more user-desired retrieval results. The codes are available at https://github.com/mzhang367/hpdh.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义层次的深度哈希大规模图像检索
深度哈希模型作为一种有效的大规模相似度搜索方法被提出。然而,现有的深度哈希方法大多只利用精细标签进行训练,而忽略了自然的语义层次结构。提出了一种有效的保留全层语义层次分类相似性的大规模图像检索方法。在两个基准数据集上的实验表明,我们的方法有助于提高精细检索的性能。此外,在语义层次结构的帮助下,它可以产生更好的用于分层检索的二进制代码,这表明它具有提供更多用户期望的检索结果的潜力。代码可在https://github.com/mzhang367/hpdh.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output augmentation works well without any domain knowledge On the Influence of Viewpoint Change for Metric Learning Shape from shading and polarization constrained by approximate shape Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution Estimating Contribution of Training Datasets using Shapley Values in Data-scale for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1