A New Method of Data Preprocessing for Network Security Situational Awareness

A. Lu, Jianping Li, L. Yang
{"title":"A New Method of Data Preprocessing for Network Security Situational Awareness","authors":"A. Lu, Jianping Li, L. Yang","doi":"10.1109/DBTA.2010.5659017","DOIUrl":null,"url":null,"abstract":"Network Security Situational Awareness(NSSA) has been a hot research in the network security domain.The amount of data from network attacks from Intrusion Detection System (IDS),and hosts'vulnerabilities and the hosts'states is very large.If we use the large amount of data as the NSSA elements directly,the algorithm of data processing must collapse or use a very long time. So in this paper,a method of data preprocessing for NSSA based on conditional random fields(CRFs) is proposed.This method takes advantages of the CRFs models which can stitch to sequence data marking and add random attributes.It uses varied connection information and its relativity in network connection information data sequence as well as the feature sets relativity to attack detection and discovery of abnormal phenomenon. It uses KDD Cup 1999 data sets as experimental data and comes to a conclusion that our proposed method is practicable,reliable and efficient.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Network Security Situational Awareness(NSSA) has been a hot research in the network security domain.The amount of data from network attacks from Intrusion Detection System (IDS),and hosts'vulnerabilities and the hosts'states is very large.If we use the large amount of data as the NSSA elements directly,the algorithm of data processing must collapse or use a very long time. So in this paper,a method of data preprocessing for NSSA based on conditional random fields(CRFs) is proposed.This method takes advantages of the CRFs models which can stitch to sequence data marking and add random attributes.It uses varied connection information and its relativity in network connection information data sequence as well as the feature sets relativity to attack detection and discovery of abnormal phenomenon. It uses KDD Cup 1999 data sets as experimental data and comes to a conclusion that our proposed method is practicable,reliable and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向网络安全态势感知的数据预处理新方法
网络安全态势感知(NSSA)一直是网络安全领域的研究热点。来自入侵检测系统(IDS)的网络攻击、主机漏洞和主机状态的数据量非常大。如果直接使用大量的数据作为NSSA元素,数据处理的算法必然崩溃或使用时间很长。为此,本文提出了一种基于条件随机场(CRFs)的NSSA数据预处理方法。该方法利用了CRFs模型可以缝合序列数据标记和添加随机属性的优点。它利用网络连接信息数据序列中的各种连接信息及其相关性以及特征集相关性来进行攻击检测和异常现象的发现。以KDD Cup 1999数据集作为实验数据,结果表明本文提出的方法是可行、可靠和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRJA: Iceberg Join Processing in Wireless Sensor Networks A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis Apply of Data Ming Technology in CRM A New Like Fibonacci Sequence and Its Properties Multisensor Estimation Fusion for Wireless Networks with Mixed Data Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1