{"title":"Neural Network Based Control of Preform Permeation in Resin Transfer Molding Processes With Real-Time Permeability Estimation","authors":"D. Nielsen, R. Pitchumani","doi":"10.1115/imece2000-1473","DOIUrl":null,"url":null,"abstract":"\n Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.