Neural Network Based Control of Preform Permeation in Resin Transfer Molding Processes With Real-Time Permeability Estimation

D. Nielsen, R. Pitchumani
{"title":"Neural Network Based Control of Preform Permeation in Resin Transfer Molding Processes With Real-Time Permeability Estimation","authors":"D. Nielsen, R. Pitchumani","doi":"10.1115/imece2000-1473","DOIUrl":null,"url":null,"abstract":"\n Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的树脂传递成型预成型渗透控制及实时渗透率估计
在树脂传递成型(RTM)过程中,预制体结构的变化是有效控制渗透的一个公认的挑战。开发了一种基于模型的智能控制器,该控制器利用渗透性的实时虚拟感知来得出控制模具入口注射压力的最佳决策,从而跟踪树脂渗透过程中所需的流前进程。这种基于模型的最优控制器采用了一种基于神经网络的预测器来模拟流场进程,以及一种基于模拟退火的优化器来优化实际控制过程中使用的注入压力。预成型渗透率是基于流前速度和沿流前的局部压力梯度估计进行虚拟实时感知的。结果表明,该控制器能够准确地控制各种填充场景和预制几何形状的流锋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Characteristics of Single Droplet Cooling Using a Microscale Heater Array Thermal Modeling for the Consolidation Process of Thermoplastic Composite Filament Winding Parametric Study of the Ablation Characteristics of Absorbing Dielectrics by Short Pulse Laser A Numerical Analysis of Gas Turbine Disks Incorporating Rotating Heat Pipes Neural Network Modeling of Molecular Beam Epitaxy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1