An efficient algorithm and architecture for medical image segmentation and tumour detection

M. S. Sharif, Abdul N. Sazish, A. Amira
{"title":"An efficient algorithm and architecture for medical image segmentation and tumour detection","authors":"M. S. Sharif, Abdul N. Sazish, A. Amira","doi":"10.1109/BIOCAS.2008.4696898","DOIUrl":null,"url":null,"abstract":"Medical image segmentation is very important for radiotherapy planning and cancer diagnosis. There are many techniques for medical image segmentation based on thresholding, classification, and multiresolution analysis (MRA). This paper proposes a system based on MRA and artificial intelligence techniques (AI) for tumour segmentation in DICOM images. The slowest parts of the proposed system have been accelerated using field programmable gate arrays (FPGA). Hardware implementation of Haar wavelet transform based factorization approach (HWTF) on reconfigurable hardware using distributed arithmetic (DA) principles is presented. The developed architecture can be integrated into a system for automatic detection and segmentation of tumour in positron emission tomography (PET) images.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Medical image segmentation is very important for radiotherapy planning and cancer diagnosis. There are many techniques for medical image segmentation based on thresholding, classification, and multiresolution analysis (MRA). This paper proposes a system based on MRA and artificial intelligence techniques (AI) for tumour segmentation in DICOM images. The slowest parts of the proposed system have been accelerated using field programmable gate arrays (FPGA). Hardware implementation of Haar wavelet transform based factorization approach (HWTF) on reconfigurable hardware using distributed arithmetic (DA) principles is presented. The developed architecture can be integrated into a system for automatic detection and segmentation of tumour in positron emission tomography (PET) images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于医学图像分割和肿瘤检测的高效算法和体系结构
医学图像分割对放疗计划和肿瘤诊断具有重要意义。基于阈值分割、分类和多分辨率分析(MRA)的医学图像分割技术有很多。本文提出了一种基于MRA和人工智能技术的DICOM图像肿瘤分割系统。采用现场可编程门阵列(FPGA)对系统中最慢的部分进行了加速。提出了一种基于Haar小波变换的因子分解方法(HWTF)在可重构硬件上的硬件实现。所开发的体系结构可以集成到正电子发射断层扫描(PET)图像中肿瘤的自动检测和分割系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless neural interface for chronic recording Development of novel SAW devices in CMOS technology for biosensor applications An efficient wireless power link for high voltage retinal implant FPGA implementation of 4-channel ICA for on-line EEG signal separation Pressure detection and wireless interface for patient bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1