Improving BCI-based Color Vision Assessment Using Gaussian Process Regression

Hadi Habibzadeh, Kevin J. Long, Allyson Atkins, Daphney-Stavroula Zois, James J. S. Norton
{"title":"Improving BCI-based Color Vision Assessment Using Gaussian Process Regression","authors":"Hadi Habibzadeh, Kevin J. Long, Allyson Atkins, Daphney-Stavroula Zois, James J. S. Norton","doi":"10.1109/icassp43922.2022.9747015","DOIUrl":null,"url":null,"abstract":"We present metamer identification plus (metaID+), an algorithm that enhances the performance of brain-computer interface (BCI)-based color vision assessment. BCI-based color vision assessment uses steady-state visual evoked potentials (SSVEPs) elicited during a grid search of colors to identify metamers—light sources with different spectral distributions that appear to be the same color. Present BCI-based color vision assessment methods are slow; they require extensive data collection for each color in the grid search to reduce measurement noise. metaID+ suppresses measurement noise using Gaussian process regression (i.e., a covariance function is used to replace each measurement with the weighted sum of all of the measurements). Thus, metaID+ reduces the amount of data required for each measurement. We evaluated metaID+ using data collected from ten participants and compared the sum-of-squared errors (SSE; relative to the average grid of each participant) between our algorithm and metaID (an existing algorithm). metaID+ significantly reduced the SSE. In addition, metaID+ achieved metaID’s minimum SSE while using 61.3% less data. By using less data to achieve the same level of error, metaID+ improves the performance of BCI-based color vision assessment.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present metamer identification plus (metaID+), an algorithm that enhances the performance of brain-computer interface (BCI)-based color vision assessment. BCI-based color vision assessment uses steady-state visual evoked potentials (SSVEPs) elicited during a grid search of colors to identify metamers—light sources with different spectral distributions that appear to be the same color. Present BCI-based color vision assessment methods are slow; they require extensive data collection for each color in the grid search to reduce measurement noise. metaID+ suppresses measurement noise using Gaussian process regression (i.e., a covariance function is used to replace each measurement with the weighted sum of all of the measurements). Thus, metaID+ reduces the amount of data required for each measurement. We evaluated metaID+ using data collected from ten participants and compared the sum-of-squared errors (SSE; relative to the average grid of each participant) between our algorithm and metaID (an existing algorithm). metaID+ significantly reduced the SSE. In addition, metaID+ achieved metaID’s minimum SSE while using 61.3% less data. By using less data to achieve the same level of error, metaID+ improves the performance of BCI-based color vision assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程回归的bci色觉评价改进
本文提出了一种基于脑机接口(BCI)的色视觉识别算法metaID+。基于脑机接口(bci)的色觉评估使用在颜色网格搜索过程中激发的稳态视觉诱发电位(ssvep)来识别异聚物——具有不同光谱分布的光源,这些光源看起来是相同的颜色。目前基于脑机接口的色觉评价方法速度较慢;它们需要在网格搜索中对每种颜色进行大量的数据收集,以减少测量噪声。metaID+使用高斯过程回归抑制测量噪声(即使用协方差函数将每个测量值替换为所有测量值的加权和)。因此,metaID+减少了每次测量所需的数据量。我们使用从10名参与者收集的数据来评估metaID+,并比较了平方和误差(SSE;相对于每个参与者的平均网格)在我们的算法和metaID(一个现有的算法)之间。metaID+显著降低了SSE。此外,metaID+实现了metaID的最小SSE,同时使用的数据量减少了61.3%。通过使用更少的数据来达到相同的误差水平,metaID+提高了基于bci的色觉评估的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1