Is Function-as-a-Service a Good Fit for Latency-Critical Services?

Haoran Qiu, Saurabh Jha, Subho Sankar Banerjee, Archit Patke, Chen Wang, H. Franke, Z. Kalbarczyk, R. Iyer
{"title":"Is Function-as-a-Service a Good Fit for Latency-Critical Services?","authors":"Haoran Qiu, Saurabh Jha, Subho Sankar Banerjee, Archit Patke, Chen Wang, H. Franke, Z. Kalbarczyk, R. Iyer","doi":"10.1145/3493651.3493666","DOIUrl":null,"url":null,"abstract":"Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization.","PeriodicalId":270470,"journal":{"name":"Proceedings of the Seventh International Workshop on Serverless Computing (WoSC7) 2021","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Serverless Computing (WoSC7) 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3493651.3493666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Function-as-a-Service (FaaS) is becoming an increasingly popular cloud-deployment paradigm for serverless computing that frees application developers from managing the infrastructure. At the same time, it allows cloud providers to assert control in workload consolidation, i.e., co-locating multiple containers on the same server, thereby achieving higher server utilization, often at the cost of higher end-to-end function request latency. Interestingly, a key aspect of serverless latency management has not been well studied: the trade-off between application developers' latency goals and the FaaS providers' utilization goals. This paper presents a multi-faceted, measurement-driven study of latency variation in serverless platforms that elucidates this trade-off space. We obtained production measurements by executing FaaS benchmarks on IBM Cloud and a private cloud to study the impact of workload consolidation, queuing delay, and cold starts on the end-to-end function request latency. We draw several conclusions from the characterization results. For example, increasing a container's allocated memory limit from 128 MB to 256 MB reduces the tail latency by 2× but has 1.75× higher power consumption and 59% lower CPU utilization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能即服务是否适合延迟关键型服务?
功能即服务(FaaS)正在成为一种日益流行的无服务器计算的云部署范例,它将应用程序开发人员从管理基础设施中解放出来。同时,它允许云提供商在工作负载整合中维护控制,例如,在同一台服务器上共同定位多个容器,从而实现更高的服务器利用率,通常以更高的端到端功能请求延迟为代价。有趣的是,无服务器延迟管理的一个关键方面还没有得到很好的研究:应用程序开发人员的延迟目标和FaaS提供商的利用率目标之间的权衡。本文对无服务器平台中的延迟变化进行了多方面的、测量驱动的研究,阐明了这种权衡空间。我们通过在IBM Cloud和私有云上执行FaaS基准测试来获得生产度量,以研究工作负载整合、排队延迟和冷启动对端到端功能请求延迟的影响。我们从表征结果中得出几个结论。例如,将容器分配的内存限制从128 MB增加到256 MB,尾部延迟减少了2倍,但功耗增加了1.75倍,CPU利用率降低了59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SFL: A Compiler for Generating Stateful AWS Lambda Serverless Applications BIAS Autoscaler: Leveraging Burstable Instances for Cost-Effective Autoscaling on Cloud Systems SLA for Sequential Serverless Chains: A Machine Learning Approach Beyond @CloudFunction: Powerful Code Annotations to Capture Serverless Runtime Patterns Is Function-as-a-Service a Good Fit for Latency-Critical Services?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1