The Comparison of Fuzzy Clustering Methods for Symbolic Interval-Valued Data

Marcin Pełka, A. Dudek
{"title":"The Comparison of Fuzzy Clustering Methods for Symbolic Interval-Valued Data","authors":"Marcin Pełka, A. Dudek","doi":"10.5604/01.3001.0014.1755","DOIUrl":null,"url":null,"abstract":"Interval-valued data can find their practical applications in such situations as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. The primary objective of the presented paper is to compare three different methods of fuzzy clustering for interval-valued symbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering and fuzzy k-means clustering with fuzzy spectral clustering. Fuzzy spectral clustering combines both spectral and fuzzy approaches in order to obtain better results (in terms of Rand index for fuzzy clustering). The conducted simulation studies with artificial and real data sets confirm both higher usefulness and more stable results of fuzzy spectral clustering method, as compared to other existing fuzzy clustering methods for symbolic interval-valued data, when dealing with data featuring different cluster structures, noisy variables and/or outliers.\n\n","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0014.1755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interval-valued data can find their practical applications in such situations as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. The primary objective of the presented paper is to compare three different methods of fuzzy clustering for interval-valued symbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering and fuzzy k-means clustering with fuzzy spectral clustering. Fuzzy spectral clustering combines both spectral and fuzzy approaches in order to obtain better results (in terms of Rand index for fuzzy clustering). The conducted simulation studies with artificial and real data sets confirm both higher usefulness and more stable results of fuzzy spectral clustering method, as compared to other existing fuzzy clustering methods for symbolic interval-valued data, when dealing with data featuring different cluster structures, noisy variables and/or outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
符号区间值数据模糊聚类方法的比较
区间值数据可以在诸如记录气象站的月间隔温度、每日间隔股票价格等情况中找到实际应用。本文的主要目的是比较区间值符号数据的三种不同的模糊聚类方法,即模糊c均值聚类、自适应模糊c均值聚类和模糊k均值聚类与模糊谱聚类。模糊光谱聚类结合了光谱和模糊两种方法,以获得更好的结果(在模糊聚类的Rand指数方面)。利用人工数据集和真实数据集进行的仿真研究表明,在处理具有不同聚类结构、噪声变量和/或离群值的数据时,模糊谱聚类方法相对于其他符号区间值数据的模糊聚类方法具有更高的有用性和更稳定的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a priori positive information on the results of voting methods Comparison of the accuracy of forecasts bsed on neural networks before and after the outbreak of the COVID-19 pandemic on the example of selected exchange rates Estimation of Yu and Meyer bivariate stochastic volatility model by iterated filtering Sample size in clinical trials – challenges and approaches Alternative investments during turbulent times comparison of dynamic relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1