Quantification of ankle muscle co-contraction during early stance by wavelet-based analysis of surface electromyographic signals

F. Nardo, Martina Morano, S. Fioretti
{"title":"Quantification of ankle muscle co-contraction during early stance by wavelet-based analysis of surface electromyographic signals","authors":"F. Nardo, Martina Morano, S. Fioretti","doi":"10.1109/MeMeA54994.2022.9856465","DOIUrl":null,"url":null,"abstract":"The present study involves Continuous Wavelet Transform (CWT) for the analysis of surface electromyographic (sEM G) signals, with the aim of assessing muscle co-contraction during early stance of healthy-subj ect walking. CWT approach allows computing the coscalogram function, a localized statistical assessment of cross-energy density between two signals. In this study, CWT coscalogram function between two sEMG signals from antagonist muscles is used to quantify muscular co-contraction activity. Daubechies of order 4 (factorization in 6 levels) is adopted as mother wavelet. Noise reduction in the sEMG signals is performed applying CWT denoising. Co-contractions between gastrocnemius lateralis and tibialis anterior are assessed on a set of experimental sEM G signals acquired in 15 able-bodied subjects during walking. Results show as the present CWT approach can provide a reliable assessment of co-contraction in early-stance phase of walking, highlighting that this co-contraction is short (< 1 0 ms) and very frequent. A large variability in the occurrence of the co-contraction is also detected, suggesting that each subject adopts her/his own modality of co-contraction. However, the same physiological purpose is maintained for all subj ects, i.e., to control shock absorption and improve weight-bearing stability during the first phase of human walking. Physiological reliability of experimental results suggests the appropriateness of the present method in clinical applications.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study involves Continuous Wavelet Transform (CWT) for the analysis of surface electromyographic (sEM G) signals, with the aim of assessing muscle co-contraction during early stance of healthy-subj ect walking. CWT approach allows computing the coscalogram function, a localized statistical assessment of cross-energy density between two signals. In this study, CWT coscalogram function between two sEMG signals from antagonist muscles is used to quantify muscular co-contraction activity. Daubechies of order 4 (factorization in 6 levels) is adopted as mother wavelet. Noise reduction in the sEMG signals is performed applying CWT denoising. Co-contractions between gastrocnemius lateralis and tibialis anterior are assessed on a set of experimental sEM G signals acquired in 15 able-bodied subjects during walking. Results show as the present CWT approach can provide a reliable assessment of co-contraction in early-stance phase of walking, highlighting that this co-contraction is short (< 1 0 ms) and very frequent. A large variability in the occurrence of the co-contraction is also detected, suggesting that each subject adopts her/his own modality of co-contraction. However, the same physiological purpose is maintained for all subj ects, i.e., to control shock absorption and improve weight-bearing stability during the first phase of human walking. Physiological reliability of experimental results suggests the appropriateness of the present method in clinical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的表面肌电信号分析量化站立早期踝关节肌肉共收缩
本研究利用连续小波变换(CWT)对表面肌电图(sEM G)信号进行分析,目的是评估健康受试者步行早期站立时肌肉的共同收缩。CWT方法允许计算协尺度函数,这是两个信号之间交叉能量密度的局部统计评估。在本研究中,使用来自拮抗剂肌肉的两个表肌电信号之间的CWT协图函数来量化肌肉共收缩活动。母小波采用4阶(6层分解)的多道系数。表面肌电信号的降噪是通过CWT去噪实现的。在15名身体健全的受试者行走过程中,通过一组实验sEM G信号评估腓肠肌外侧肌和胫骨前肌之间的共同收缩。结果表明,CWT方法可以提供可靠的评估步行早期站立阶段的共收缩,强调这种共收缩时间短(< 10 ms)且非常频繁。在共缩的发生中也发现了很大的变化,这表明每个主语都采用了她/他自己的共缩形式。然而,所有受试者都保持相同的生理目的,即在人类行走的第一阶段控制减震和提高负重稳定性。实验结果的生理可靠性表明了该方法在临床应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time and Frequency domain analysis of APB muscles Abduction in adult dominant hand using surface electromyography signals Comparison of Noise Reduction Techniques for Dysarthric Speech Recognition Effects of ROI positioning on the measurement of engineered muscle tissue contractility with an optical tracking method Atrial Fibrillation Detection by Means of Edge Computing on Wearable Device: A Feasibility Assessment Unraveling the biological meaning of radiomic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1