Machine Learning Based Approach for Context Aware System

Zakaria Afkir, Hatim Guermah, M. Nassar, S. Ebersold
{"title":"Machine Learning Based Approach for Context Aware System","authors":"Zakaria Afkir, Hatim Guermah, M. Nassar, S. Ebersold","doi":"10.1109/WETICE.2019.00017","DOIUrl":null,"url":null,"abstract":"Machine learning approaches propose a promising solution for extracting and analyzing contextual information from different data sources. Especially, in the E-health field, the need for Improvement in risk prediction, early detection and prevention of disease remains an essential task for the well-being of patients at risk. In this paper, we aim to explore the added value of using machine learning based approach to predict contextual situations in context-aware systems, and more specifically the field of E-health.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning approaches propose a promising solution for extracting and analyzing contextual information from different data sources. Especially, in the E-health field, the need for Improvement in risk prediction, early detection and prevention of disease remains an essential task for the well-being of patients at risk. In this paper, we aim to explore the added value of using machine learning based approach to predict contextual situations in context-aware systems, and more specifically the field of E-health.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的上下文感知系统方法
机器学习方法为从不同数据源中提取和分析上下文信息提供了一个很有前途的解决方案。特别是在电子保健领域,需要改进风险预测、早期发现和预防疾病,这仍然是一项重要任务,以保障处于危险中的患者的福祉。在本文中,我们的目标是探索使用基于机器学习的方法来预测上下文感知系统中的上下文情况的附加价值,更具体地说,是在电子卫生领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time SCADA Attack Detection by Means of Formal Methods Architecture of Anomaly Detection Module for the Security Operations Center Privacy Preserving Intrusion Detection Via Homomorphic Encryption A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata Mining Developer's Behavior from Web-Based IDE Logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1